Physical Process Modeling

Physical Process Modeling Library


MATHEMATICS



A

Abramowitz, M., Milton, J. and Stegun, I. A. (1968). Handbook of Mathematical Functions. Dover: New York.
Amsden, A. A. and Harlow, F. H. (1970). The SMAC method - a numerical technique for calculating incompressible fluid flows. LA4370, Los Alamos.
Ahlfors, L.V. (1996) Lectures on Quasiconformal Mappings, Van Nostrand, New York.
Akin, J.E., Finite Elements for Analysis and Design, London: Academic Press (1994).
Akin, J.E., Object-Oriented Programming Via Fortran 90/95, Cambridge: Cambridge University Press (2003).
Aluru, N.R. and White, J. (1997). An efficient numerical technique for electromechanical simulation of complicated microelectromechanical structures. Sensors and Actuators.
Aluru, N.R. and Li, G. (2001). Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation. International Journal for Numerical Methods in Engineering.
Aris, R. (1962) Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, NJ. Boor, C. (1974) Good approximation by splines with variable knots. Lect. Notes Math. 363, 12-20.
Atluri, S.N. and Shen, S. (2002). The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, Encino, CA.
Abdallah, S. (1995), 'Comments on the fractional step method: "An analysis of the fractional step method" [J. Comput. Phys. 108 (1993), no. 1, 51-58] by J. B. Perot', J. Comput. Phys. 117(1), 179-180.
Adams, R. A. (1975), Sobolev spaces, Vol. 65 of Pure and Applied Mathematics, Academic Press, New York.
Ainsworth, M. (2001), 'Essential boundary conditions and multi-point constraints in finite element analysis', Comput. Methods Appl. Mech. Eng. 190(48), 6323-6339.
Ainsworth, M. and Oden, J. T. (2000), A posteriori error estimation infinite element analysis, John Wiley & Sons, Chichester.
Allievi, A. and Bermejo, R. (2000), 'Finite element modified method of characteristics for the Navier-Stokes equations', Int. J. Numer. Methods Fluids 32(4), 439-464.
Ames, W. F. (1992), Numerical methods for partial differential equations, third edn, Academic Press, New York.
Arnold, D. N., Brezzi, F. and Fortin, M. (1984), 'A stable finite element for the Stokes equations', Calcolo 21(4), 337-344.

B

Babuska, I. and Strouboulis, T., The Finite Element Method and its Reliability, Oxford: Oxford University Press (2001).
Bathe, K.J., Finite Element Procedures, Englewood Cliffs: Prentice Hall (1996).
Banerjee, P.K. (1994). The Boundary Element Methods in Engineering. McGraw Hill Europe, Maidenhead, Berkshire, UK.
Banichuk, N.V. (1983). Problems and Methods of Optimal Structural Design. Plenum, New York.
Bao, Z. and Mukherjee, S. (2004). Electrostatic BEM for MEMS with thin conducting plates and shells. Engineering Analysis with Boundary Elements. 28:1427-1435.
Bao, Z. and Mukherjee, S. (2005). Electrostatic BEM for MEMS with thin beams. Communications in Numerical Methods in Engineering. In press.
Bao, Z., Mukherjee, S., Roman, M. and Aubry, N. (2004). Nonlinear vibrationsof beamss tringsplatesand membraneswithout initial tension. ASME Journal of Applied Mechanics 71:551-559.
Becker, E.B., Carey, G.F., and Oden, J.T., Finite Elements ? An Introduction, Englewood Cliffs: Prentice Hall (1981).
Belytschko, T., Liu, W.K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, New York: John Wiley (2000).
Becker, A.A. (1992). The Boundary Element Method in Engineering. Mc-Graw Hill International, Singapore.
Belytschko, T., Lu, Y.Y. and Gu, L. (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering
Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996). Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering
Berman, R. H., Brownrigg, D. R. K. and Hockney, R. W. (1978). Numerical models of galaxies I. The variability of spiral structure. Mon. Not. R. Astr. Soc., 185, 861.
Bobaru, F. and Mukherjee, S. (2001). Shape sensitivity analysis and shape optimization in planar elasticity using the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering
Bobaru, F. and Mukherjee, S. (2002). Meshless approach to shape optimization of linear thermoelastic solids. International Journal for Numerical Methods in Engineering.
Bonnet, M. (1995). Boundary Integral Equation Methods for Solids and Fluids. Wiley, Chichester, UK.
Bonnet, M. and Xiao, H. (1995). Computation of energy release rate using material differentiation of elastic BIE for 3-D elastic fracture. Engineering Analysis with Boundary Elements.
Bonet, J. and Wood, R.D., Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge: Cambridge University Press (1997).
Bowyer, A. (1981) Computing Dirichlet tessellations. Comput. J. 24(2), 162-166.
Biggs, J.M., Introduction to Structural Dynamics, New York: McGraw-Hill (1964). 436 Finite Element Analysis with Error Estimators
Brebbia, C.A. and Dominguez, J. (1992). Boundary Elements: An Introductory Course. 2nd edition. Computational MechanicsPublications, Southampton, UK, and McGraw Hill, New York.
Brebbia, C. A. Nowak, A. (1989), A new approach for transforming domain integrals to the boundary, in R. Gruber, J. Periaux & R. P. Shaw, eds, 'Proceedings of the Fifth International Symposium on Numerical Methods in Engineering', ComputationalMechanics Publications, Springer-Verlag, pp. 73-84.
Brebbia, C. A., Telles, J. C. F. & Wrobel, L. C. (1984a), Boundary Element Techniques, Springer-Verlag.
Brebbia, C. A., Telles, J. C. F. & Wrobel, L. C. (1984b), Boundary element techniques: Theoryand applications in engineering, Springer-Verlag, New York.
Brebbia, C. A. Walker, S. (1980), Boundary Element Techniques In Engineering, Newnes-Butterworths.
Babuska, I. (1970/71), 'Error-bounds for finite element method', Numer. Math. 16, 322-333.
Baiocchi, C., Brezzi, F. and Franca, L. (1993), 'Virtual bubbles and the Galerkinleast-squares method', Comput. Methods Appl. Mech. Eng. 105(1), 125-141.
Baker, A. J. (1983), Finite element computational fluid mechanics, Hemisphere,Washington, D.C.
Batchelor, G. K. (1999), An introduction to fluid dynamics, Cambridge University Press, Cambridge.
Bathe, K.-J., Hendriana, D., Brezzi, F. and Sangalli, G. (2000), 'Inf-sup testing of upwind methods', Int. J. Numer. Methods Eng. 48(5), 745-760.
Baumann, C. E. and Oden, J. T. (1999), 'A discontinuous hp finite element method for convection-diffusion problems', Comput. Methods Appl. Mech. Eng. 175(3-4), 311-341.
Baumann, C. E. and Oden, J. T. (2000), 'An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics', Int. J. Numer. Methods Eng. 47(1-3), 61-73.
Bell, J. B., Colella, P. and Glaz, H. M. (1989), 'A second-order projection method for the incompressible Navier-Stokes equations', J. Comput. Phys. 85(2), 257-283.
Belytschko, T. (1983), 'An overview of semidiscretization and time integration procedures', in T. Belytschko and T. J. R. Hughes, eds, Computational methods for transient analysis, Vol. 1 of Mechanics and Mathematical Methods. A Series of Handbooks. Subseries: Computational Methods in Mechanics, Elsevier Scientific, Amsterdam, Chap. 1, pp. 1-65.
Belytschko, T. and Eldib, I. (1979), 'Analysis of a finite element upwind scheme', in T. J. R. Hughes, ed., Finite element methods for convection dominated flows, AMD - Vol. 34, Presented at the Winter Annual Meeting of the ASME, Amer. Soc. Mech. Engrs. (ASME), New York, pp. 195-200.
Belytschko, T. and Kennedy, J. M. (1978), 'Computer methods for subassembly simulation', Nucl. Eng. Des. 49, 17-38.
Belytschko, T., Kennedy, J. M. and Schoeberle, D. F. (1978), 'Quasi-Eulerian finite element formulation for fluid-structure interaction', Proceedings of the Joint ASME/CSME Pressure Vessels and Piping Conference, Amer. Soc. Mech. Engrs. (ASME), New York, p. 13. ASME paper 78-PVP-60.
Belytschko, T., Krongauz, Y, Organ, D., Fleming, M. and Krysl, P. (1996), 'Meshless methods: an overview and recent developments', Comput. Methods Appl. Mech. Eng. 139(1-4), 3-48.
Belytschko, T., Liu, W. K. and Moran, B. (2000), Nonlinear finite elements for continua and structures, John Wiley & Sons, Chichester.
Belytschko, T., Lu, Y. Y. and Gu, L. (1994), 'Element-free Galerkin methods', Int. J. Numer. Methods Eng. 37(2), 229-256.
Benque, J. P., Ibler, B., Keramsi, A. and Labadie, G. (1980), 'A finite element method for the Navier-Stokes equations', Proceedings from the Third International Conference on Finite Elements in Flow Problems, Banff, Alberta, Canada, June
Benque, J. P., Labadie, G. and Ronat, J. (1982), 'A new finite element method for the Navier-Stokes equations coupled with a temperature equation', in T. Kawai, ed., Finite element flow analysis, Proceedings of the Fourth International Symposium, (Tokyo 1982), North-Holland, Amsterdam, pp. 295-302.
Bercovier, M. (1978), 'Perturbation of mixed variational problems. Application to mixed finite element methods', RAIRO Anal. Numer. 12(3), 211-236.
Bercovier, M. and Engelman, M. (1979), 'A finite element for the numerical solution of viscous incompressible flows', J. Comput. Phys. 30(2), 181-201.
Bermejo, R. (1995), 'A Galerkin-characteristic algorithm for transport-diffusion equations', SIAM J. Numer. Anal. 32(2), 425-454.
Blasco, J., Codina, R. and Huerta, A. (1997), 'Analysis of fractional step finite element methods for the incompressible Navier-Stokes equations', Technical Report 38, International Center for Numerical Methods in Engineering (CIMNE)
Blasco, J., Codina, R. and Huerta, A. (1998), 'A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm', Int. J. Numer. Methods Fluids 28(10), 1391-1419.
Bonet, J. and Wood, R. D. (1997), Nonlinear continuum mechanics for finite element analysis, Cambridge University Press, Cambridge.
Boris, J. P. and Book, D. L. (1997), 'Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works [J. Comput. Phys. 11 (1973), no. 1, 38-69]', J. Comput. Phys. 135(2), 170-186. With an introduction by Steven T. Zalesak, Commemoration of the 30th anniversary of J. Comput. Phys.
Brezzi, F. (1974), 'On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrangian multipliers', RAIRO Anal. Numer. 8(R-2), 129-151.
Brezzi, F. and Bathe, K.-J. (1990), 'A discourse on the stability conditions for mixed finite element formulations', Comput. Methods Appl. Mech. Eng. 82(1-3), 27-57.
Brezzi, F. and Fortin, M. (1991), Mixed and hybrid finite element methods, Vol. 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York.
Brezzi, F., Franca, L. P. and Russo, A. (1998), 'Further considerations on residual-free bubbles for advective-diffusive equations', Comput. Methods Appl. Mech. Eng. 166(1-2), 25-33.
Brooks, A. N. and Hughes, T. J. R. (1982), 'Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations', Comput. Methods Appl. Mech. Eng. 32(1-3), 199-259.
Bung, H., Casadei, F., Halleux, J.-P. and Lepareux, M. (1989), 'PLEXIS-3C: a computer code for fast dynamic problems in structures and fluids', Proceedins of the 10th SMIRT Conference, Anaheim, USA.
Burggraf, O. R. (1966), 'Analytical and numerical studies of the structure of steady separated flows', J. Fluid Mechanics 24(1), 113-152. Carette, J.-C. (1997), 'Adaptive unstructured mesh algorithms and SUPG finite element method for compressible high Reynolds number flows', PhD thesis, Universite Libre de Bruxelles, Belgium.

C

Carey, G.F. (1997) Computational Grids - Generation, Adaptation, and Solution Strategies, Taylor and Francis.
Carstensen, C. (1995). Adaptive boundary element methods and adaptive finite element methodsand boundary element coupling. Boundary Value Problems and Integral Equations in Nonsmooth Domains. M. Costabel, M.Dauge and S. Nicaise eds., 47-58. Marcel Dekker.
Carstensen, C. and Stephan, E.P. (1995). A posteriori error estimates for boundary element methods. Mathematics of Computation 64:483-500.
Carstensen, C., Estep, D. and Stephan, E.P. (1995). h-adaptive boundary element schemes. Computational Mechanics 15:372-383.
Carstensen, C. (1996). Efficiency of a posteriori BEM error estimates for first kind integral equations on quasi-uniform meshes. Mathematics of Computation 65:69-84.
Chandra, A. and Mukherjee, S. (1997). Boundary Element Methods in Manufacturing. Oxford University Press, NY.
Chati, M.K. (1999). Meshless Standard and Hypersingular Boundary Node Method - Applications in Three-Dimensional Potential Theory and Linear Elasticity. Ph.D. Dissertation, Cornell University, Ithaca, NY.
Chati, M.K. and Mukherjee, S. (1999). Evaluation of gradientson the boundary using fully regularized hypersingular boundary integral equations. Acta Mechanica 135:41-55.
Chati, M.K., Mukherjee, S. and Mukherjee, Y.X. (1999). The boundary node method for three-dimensional linear elasticity. International Journal for Numerical Methods in Engineering 46:1163-1184.
Chati, M.K. and Mukherjee, S. (2000). The boundary node method for three-dimensional problems in potential theory. International Journal for Numerical Methods in Engineering 47:1523-1547.
Chati, M.K., Mukherjee, S. and Paulino, G.H. (2001). The meshless hypersingular boundary node method for three-dimensional potential theory and linear elasticity problems. Engineering Analysis with Boundary Elements 25:639-653.
Chati, M.K., Mukherjee, S. and Paulino, G.H. (2001). The meshless standard and hypersingular boundary node methods- applicationsto error estimation and adaptivity in three-dimensional problems. International Journal for Numerical Methods in Engineering 50:2233-2269.
Chen, G. and Zhou, J. (1992). Boundary Element Methods. Academic Press.
Chen, J.T. and Hong, H.K. (1999). Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. ASME Applied Mechanics Reviews 52:17-33.
Chen, S.Y., Tang, W.X., Zhou, S.J., Leng, X. and Zheng, W. (1999). Evaluation of J integrals and stress intensity factors in a 2D quadratic boundary contour method. Communications in Numerical Methods in Engineering 15:91-100.
Chen, W. and Tanaka, M. (2002). A meshless, integration-free, boundaryonly RBF technique. Computers and Mathematics with Applications 43:379-391.
Choi, J.H. and Kwak, B.M. (1988). Boundary integral equation method for shape optimization of elastic structures. International Journal for Numerical Methods in Engineering 26:1579-1595.
Ciarlet, P.G. (1991). Basic error estimates for elliptic problems. Finite Element Methods (Part 1) - Vol. 2 of Handbook of Numerical Analysis. P. G. Ciarlet and J. L. Lions eds., Elsevier Science Publishers.
Costabel, M. and Stephan, E. (1985). Boundary integral equations for mixed boundary value problemsin polygonal domainsand Galerkin approximation. Mathematical Models and Methods in Mechanics Vol. 15. W. Fiszdon and K. Wilmanski eds., Banach Center Publications.
Costabel, M., Dauge, M. and Nicaise, S. eds. (1995). Boundary Value Problems and Integral Equations in Non-smooth Domains. Number 167 in Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Publications.
Cruse, T.A. (1969). Numerical solutions in three-dimensional elastostatics. International Journal of Solids and Structures.
Cruse, T.A. (1988). Boundary Element Analysis in Computational Fracture Mechanics. Kluwer, Dordrecht, The Netherlands.
Cruse, T.A. and Richardson, J.D. (1996). Non-singular Somigliana stress identitiesin elasticity. International Journal for Numerical Methods in Engineering 39:3273-3304.
Coates, I. E. (1980). On the origin of planets. Ph.D. thesis, Council for National Academic Awards, Teesside Polytechnic (now Teesside University).
Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19, 297.
Courant, R., Friedrichs, K. and Lewy, H. (1928). Uber die partiellen Differenzgleichungen der mathematischen Physik. Math. Ann., 100, 32-74. Translated as: On the partial differential equations of mathematical physics. IBM J., 11, 215-34.
Cook, R.D., Malkus, D.S., Plesha, N.E., and Witt, R.J., Concepts and Applications of Finite Element Analysis, New York: John Wiley (2002).
Crisfield, M.A., Non-linear Finite Element Analysis of Solids and Structures, Vol. 1, Chichester: John Wiley (1997).
Cockburn, B. and Shu, C.-W. (2001), 'Runge-Kutta discontinuous Galerkin methods for convection-dominated problems', J. Sci. Comput. 16(3), 173-261.
Codina, R. (1993a), 'A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation', Comput. Methods Appl. Mech. Eng. 110(3-4), 325-342.
Codina, R. (1993b), 'A finite element formulation for the numerical solution of the convection-diffusion equation', Technical Report 14, International Center for Numerical Methods in Engineering (CIMNE), Barcelona.
Codina, R. (1998), 'Comparison of some finite element methods for solving the diffusion-convection-reaction equation', Comput. Methods Appl. Mech. Eng. 156(1-4), 185-210.
Codina, R. (2000), 'On stabilized finite element methods for linear systems of convection-diffusion-reaction equations', Comput. Methods Appl. Mech. Eng. 188(l-3), 61-82.
Codina, R., Vazquez, M. and Zienkiewicz, O. C. (1998), 'A general algorithm for compressible and incompressible flows. III. The semi-implicit form', Int. J. Numer. Methods Fluids 27(1-4, Special Issue), 13-32.
Courant, R., Friedrichs, K. and Lewy, H. (1967), 'On the partial difference equations of mathematical physics', IBMJ. Res. Develop. 11, 215-234. English translation of an article originally published in German in Math. Ann. 100 (1928), 32-74.
Crouzeix, M. and Raviart, P.-A. (1973), 'Conforming and nonconforming finite element methods for solving the stationary Stokes equations. F, RAIROAnal. Numer. 7(R-3), 33-75.
Clements, D. L. & Rizzo, F. (1978), 'A method for the numerical solution of boundary value problems governed by second-order elliptic systems', Journal of the Institute of Mathematics Applications 22, 197-202.
Coleman, C. J., Tullock, D. L. & Phan-Thien, N. (1991), 'An effective boundary element method for inhomogeneous partial differential equations', Journal of Applied Mathematics and Physics (ZAMP) 42, 730-745.
Curran, D. A. S., Cross, M. & Lewis, B. A. (1980), 'Solution of parabolic differential equations by the boundary element method using discretisation in time', Applied Mathematical Modelling 4, 398-400.
Carey, G. F. and Jiang, B. N. (1988), 'Least-squares finite elements for first-order hyperbolic systems', Int. J. Numer. Methods Eng. 26(1), 81-93.
Carey, G. F. and Oden, J. T. (1983), Finite elements. A second course, Vol. II of The Texas Finite Element Series, Prentice Hall, Englewood Cliffs, NJ.
Carey, G. F. and Oden, J. T. (1986), Finite elements. Fluid mechanics, Vol. VI of The Texas Finite Element Series, Prentice Hall, Englewood Cliffs, NJ.
Carey, G. F, Shen, Y. and McLay, R. T. (1998), 'Parallel conjugate gradient performance for least-squares finite elements and transport problems', Int. J. Numer. Methods Fluids 28(10), 1421-1440.
Casadei, F. and Halleux, J.-P. (1995), 'An algorithm for permanent fluid-structure interaction in explicit transient dynamics', Comput. Methods Appl. Mech. Eng. 128(3-4), 231-289.
Casadei, F, Halleux, J.-P, Sala, A. and Chille, F. (2001), Transient fluid-structure interaction algorithms for large industrial applications', Comput. Methods Appl Mech. Eng. 190(24-25), 3081-3110.
Casadei, F. and Sala, A. (1999), 'Finite element and finite volume simulation of industrial fast transient fluid-structure interactions', European Conference on Computational Mechanics, ECCM'99, Munich.
Chorin, A. J. (1968), 'Numerical solution of the Navier-Stokes equations', Math. Comput. 22, 745-762.
Chorin, A. J. (1969), 'On the convergence of discrete approximations to the Navier-Stokes equations', Math. Comput. 23, 341-353.
Christie, I. (1985), 'Upwind compact finite difference schemes', J. Comput. Phys. 59(2), 353-368.
Christie, I., Griffiths, D. F., Mitchell, A. R. and Zienkiewicz, O. C. (1976), 'Finite element methods for second order differential equations with significant first derivatives',Int. J. Numer. Methods Eng. 10(6), 1389-1396.
Christon, M. A. (1991), 'The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation', Comput. Methods Appl. Mech. Eng. 173(1-2), 147-166.
Ciarlet, P. G. (1978), The finite element method for elliptic problems, Vol. 4 of Studies in Mathematics and its Applications, North-Holland, Amsterdam.
Cockburn, B. (1998), 'An introduction to the discontinuous Galerkin method for convection-dominated problems', in A. Quarteroni, ed., Advanced numerical approximation of nonlinear hyperbolic equations, Vol. 1697 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, pp. 151-268. Papers from the C.I.M.E. Summer School held in Cetraro, June 23-28, 1997.

D

Dahmen, W., Kurdila, A. J. and Oswald, P. (eds) (1997), Multiscale wavelet methods for partial differential equations, Academic Press, San Diego, CA.
Davis, G. D. V. and Mallinson, G. (1976), 'An evaluation of upwind and central difference approximations by a study of recirculating flow', Comput. Fluids 4, 29-43.
D'Addetta, G.A., Kun, F., Hemnaim, H.J. and Ramm, E. (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Granular Matter. 4(2).
De Borst, R. (2001) Some recent issues in computational failure mechanics, Int. J. Numer. Meth. Engng. 52(1/2).
De, S. and Bathe, K.J. (2000). The method of finite spheres. Computational Mechanics.
Deconinck, H., Hirsch, C. and Peuteman, J. (1986), 'Characteristic decomposition methods for the multidimensional Euler equations', Tenth international conference on numerical methods in fluid dynamics (Beijing, 1986), Vol. 264 of Lecture Notes in Phys., Springer-Verlag, Berlin, pp. 216-221.
Dialer, C. (1992) A distinct element approach for the defromation behavior of shear stressed masonry panels. Proceedings of the 6th Canadian Masonry Symposium, Saskatoon.
Drake, T.G. (1990) Structural features in granular flows, J. Geophys. Res. 95(B6).
Donea, J. (1983), 'Arbitrary Lagrangian-Eulerian finite element methods', in T. Belytschko and T. J. R. Hughes, eds, Computational methods for transient analysis, Vol. 1 of Mechanics and Mathematical Methods. A Series of Handbooks. Subseries: Computational Methods in Mechanics, Elsevier Scientific, Amsterdam, Chap. 10, pp. 473-516.
Donea, J. (1984), 'A Taylor-Galerkin method for convective transport problems', Int. J. Numer. Methods Eng. 20(24), 101-120.
Donea, J., Belytschko, T. and Smolinski, P. (1985), 'A generalized Galerkin method for steady convection-diffusion problems with application to quadratic shape functions', Comput. Methods Appl. Mech. Eng. 48(1), 25-43.
Donea, J., Fasoli-Stella, P. and Giuliani, S. (1977), 'Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems', Transactions of the 4th SMIRT Conference, Vol. B. paper Bl/2, San Francisco, 15-19 August.
Donea, J. and Giuliani, S. (1981), 'A simple method to generate high-order accurate convection operators for explicit schemes based on linear finite elements', Int. J. Numer. Methods Fluids 1(1), 63-79.
Donea, J., Giuliani, S. and Halleux, J.-P. (1982), 'An Arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions', Comput. Methods Appl. Mech. Eng. 33, 689-723.
Donea, J., Giuliani, S., Laval, H. and Quartapelle, L. (1982), 'Finite element solution of the unsteady Navier-Stokes equations by a fractional step method', Comput. Methods Appl. Mech. Eng. 30, 53-73.
Donea, J. and Quartapelle, L. (1992), 'An introduction to finite element methods for transient advection problems', Comput. Methods Appl. Mech. Eng. 95(2)
Donea, J., Quartapelle, L. and Selmin, V. (1987), 'An analysis of time discretization in the finite element solution of hyperbolic problems', J. Comput. Phys. 70(2), 463-499.
Donea, J., Roig, B. and Huerta, A. (1998), 'High-order accurate time-stepping schemes for convection-diffusion problems', Technical Report 42, International Center for Numerical Methods in Engineering (CIMNE), Barcelona.
Donea, J., Roig, B. and Huerta, A. (2000), 'High-order accurate time-stepping schemes for convection-diffusion problems', Comput. Methods Appl. Mech. Eng. 182(3-4), 249-275.
Donea, J., Selmin, V. andQuartapelle, L. (1988), 'Recent developments of the Taylor-Galerkin method for the numerical solution of hyperbolic problems', Numerical methods for fluid dynamics, III (Proceedings of the 3rd Conference, Oxford, 1988), Vol. 17 of Inst. Math. Appl, Conf. Ser. New Ser., Oxford Univ. Press, New York, pp. 171-185.
Douglas, Jr, J. and Russell, T. F. (1982), 'Numerical methods for convectiondominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures', SIAM J. Numer. Anal. 19(5), 871-885.
Dolbow, J. (2000). Modeling fracture in Mindlin-Reissner plates with the extended finite element method. International Journal of Solids and Structures.
Dormand, J. R. (1996). Numerical Methods for Differential Equations: A Computational Approach. CRC Press Inc.: Boca Raton, Florida.
Duarte, C.A.M. and Oden, J.T. (1996). H-p clouds - an h-p meshless method. Numerical Methods in Partial Differential Equations.
Duarte, C.A.M. and Oden, J.T. (1996). An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering.
Duarte, C. A. and Oden, J. T. (1996), 'H-p clouds-an h-p meshless method', Numer. Meth. Part. Differ. Equ. 12(6), 673-705.
Dautray R, Lions JL (1990) Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag Berlin Heidelberg New York
Deif A (1986) Sensitivity Analysis in Linear Systems. Springer-Verlag Berlin Heidelberg New York
Desai CS, Kundu T (2001) Introductory Finite Element Method. CRC Press, Boca Raton, FL
Dolbow J, Mo?es N, Belytschko T (2000) "Discontinuous enrichment in finite elements with a partition of unity method", Finite Elements in Analysis and Design, 36: 235-260
Dow JO (1999) Finite Element Methods and Error Analysis Procedures: A Unified Approach. Academic Press, San Diego
Duddeck F (2002) Fourier BEM. Springer-Verlag Berlin Heidelberg New York 80. Dvorkin EN, Goldschmit MB (2005) Nonlinear Continua. Springer-Verlag Berlin Heidelberg New York
Danson, D. J. (1981), A boundary element formulation of problems in linear isotropic elasticity with body forces, in C. A. Brebbia, ed., 'Boundary Element Methods', Computational Mechanics Publications and Springer-Verlag, pp. 105-122.
Davidenko, D. F., On a new method of numerical solution of non-linear equations,
Davidon, W. C., Variable Metric Method for Minimisation, Argonne Nat. Lab. Report
Davidon, W. C., Variance algorithms for minimisation, Computer J., 10, 406-410
Day, A. S., Introduction to dynamic relaxation, The Engineer, 219, 218-221 (1965).
Decker, D. W. & Keller, H. B., Path following near bifurcation, Comm. Pure Appl.
Dennis, J. E. & More, J., Quasi-Newton methods, motivation and theory, SIAM Rev.,
Desai, C.S. and Abel, J.F., Introduction to the Finite Element Method, New York: Van Nostrand - Reinhold (1972).

E

Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. (1995). Introduction to adaptive methodsfor partial differential equations. Acta Numerica Chapter 3. A. Iserles ed., 105-158, Cambridge University Press, UK.
Erikkson, L.-E. (1982) Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation. AIAA Journal 20, 1313-1320.
Eriksson, E., Using eigenvector projections to improve convergence in non-linear finite element equilibrium iterations, 24, 497-51 2 (1987).
Eriksson, A., On linear constraints for Newton-Raphson corrections and critical point searches in structural f.e. problems, Int. J . Num. Meth. Engng., 28, 1317, 1334 (1989).
Eriksson, E., On some path-related measures for non-linear structural f.e. problems, Int. J. Num. Meth. Engng., 26, I79 1 - I803 (1988).
Eringen, A.C. (1968) Theory of micropolar elasticity. In Fracture - An Advanced Treatise, Chapter 7, Liebovitz (Ed.), Vol. II, Academic Press, New York, 621-693.
Edelsbrunner H (2001) Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge
Elishakoff I, Ren Y (2003) Finite Element Methods for Structures With Large Stochastic Variations. Oxford University Press, Oxford
Estep D, Holst M, Larson M (2003) Generalized Green's functions and the effective domain of influence. Preprint 2003-10, Chalmers Finite Element Center, Chalmers University of Technology, Goteborg, Sweden
Eiseman, P.R., Cheng, Z. and Hauser, J. (1994) Application of multiblock grid generation with automatic zoning. In: Weatherill, N.P., Eiseman, P.R.,

F

Feistaur, M., Hsiao, G.C. and Kleinman, R.E. (1996). Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations. SIAM Journal of Numerical Analysis.
Feng, Y.Q. and Yu, A.B. (2002) Effect of bed thickness on fluidization behaviour of particles mixtures. 4th World Congress on Particle Technology, Sydney, Australia (to appear).
Feng, Y.Q., Xu, B.H., Zhang, S.J., Yu, A.B. and Zulli, P. (2001) Size segregation of particle mixtures in a gas-fluidized bed. 7th Int. Conf. on Bulk Materials Storage, Handling and Transportation, Newcastle, Australia, 377-385.
Feng, Y.T. and Owen, D.R.J. (2002) An augumented spatial digital tree algorithm for contact detection in computational mechanics. Int. J. Num. Meth. Eng. (in press).
Feng, Y.T. and Owen, D.R.J. (2002b) An energy based comer to corner contact algorithm. 3rd Int. Conf. Discrete Element Methods, Santa Fe, NM, 23-25.
Feng, Y.T., Han, K. and Owen, D.R.J. (2002) Filling domains with disks: an advancing front approach. Int. J. Numer. Meth. Eng. (in press).
Felippa, C. A. (2001), 'A historical outline of matrix structural analysis: a play in three acts', Comput. Struct. 79(14), 1313-1324.
Franca, L. P. and Frey, S. L. (1992), 'Stabilized finite element methods: II. The incompressible Navier-Stokes equations', Comput. Methods Appl. Mech. Eng. 99(2-3), 209-233.
Franca, L. P., Frey, S. L. and Hughes, T. J. R. (1992), 'Stabilized finite element methods. I. Application to the advective-diffusive model', Comput. Methods Appl. Mech. Eng. 95(2), 253-276.
Franca, L. P. and Hughes, T. J. R. (1993), 'Convergence analyses of Galerkin leastsquares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations', Comput. Methods Appl. Mech. Eng. 105(2), 285-298.
Franca, L. P., Nesliturk, A. and Stynes, M. (1998), 'On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method', Comput. Methods Appl. Mech. Eng. 166(1-2), 35-49.
Fung, Y-C. (1965). Foundations of Solid Mechanics. Prentice Hall, Englewood Cliffs, NJ.
Fairweather, G., Rizzo, F. J., Shippy, D. J. & Wu, Y. S. (1979), 'On the numerical solution of two-dimensional problems by an improved boundary integral equation method', J. Comput. Phys. 31, 96-112.
Farrashkhalvat, M. and Miles, J.P. (1990) Tensor Methods for Engineers, Ellis Horwood, Chichester.
Fagan MJ (1992) Finite Element Analysis: Theory and Practice. John Wiley & Sons, New York.
Fellin W, Lessmann H, Oberguggenberger M, Vieider R (Eds.) (2005) Analyzing Uncertainty in Civil Engineering. Springer-Verlag Berlin Heidelberg New York References 583
Fenner RT (1975) Finite Element Methods for Engineers. The Macmillan Press Ltd., London
Fix GJ, Strang G (1969) "Fourier analysis of the finite element method in Ritz- Galerkin theory", Studies in Appl. Math. 48 265-273
Frey PJ, George PL (2000) Mesh Generation Application to Finite Elements. Hermes Science Publishing, Oxford, Paris
Fujita H. (1955) "Contributions to the theory of upper and lower bounds in boundary value problems", J. Phys. Soc. Japan 10: 1-8
Felippa, C. A., Solution of nonlinear static equations, Chapter prepared for North-Holland Series on Comp. Meth. in Mechanics, Vol. on Large deflection and stability of structures, ed. K.-J. Bathe, Dept. of Mech. Engng., MIT (1986).
Felippa, C. A., Procedures for computer analysis of large nonlinear structural systems, Proc. Int. Symp. On Large Engng. Systems, ed. A. Wexler, Pergamon Press, pp. 60-90 (1977).
Felippa, C. A., Dynamic relaxation under general incremental control, Innovative methods for Nonlinear Problems, ed. W. K. Liu et al., Pineridge Press, Swansea, pp.
Fletcher, R., A New approach to variable metric algorithms, Computer J., 13, 317 -322
Fletcher, R. Practical methods of optimisation, 2nd edition, Wiley, (1987).
Fletcher, R. & Reeves, C. M., Function minimisation by conjugate gradients, Comp. J.,
Forde. B. W. R. & Sttemer, S. F., Improved arc length orthogonality methods for nonlinear finite element analysis, Computers & Structures, 27, 625-630 (1987).

G


Gaul, L., K?ogl, M. and Wagner, M. (2003). Boundary Element Methods for Engineers and Scientists. Springer Verlag, Heidelberg, Germany.
Ghosh, N. and Mukherjee, S. (1987). A new boundary element method formulation for three dimensional problems in linear elasticity. Acta Mechanica 67:107-119.
Gilbert, J.R., Legtenberg, R. and Senturia, S.D. (1995). 3D coupled electromechanicsfor MEMS - applicationsof CoSolve EM. Proceedings of IEEE MEMS pp.122-127.
Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc., 181, 375.
Glushkov, E., Glushkova, N. and Lapina, O. (1999). 3-D elastic stress analysis at polyhedral corner points. International Journal of Solids and.
Goldberg, M.A. and Bowman, H. (1998). Superconvergence and the use of the residual as an error estimator in the BEM - I. Theoretical Development. Boundary Element Communications 8:230-238.
Golberg, M. A. (1995), 'The numerical evaluation of particular solutions in the BEM - a review',Boundary Element Communications.
Golberg, M. A. Chen, C. S. (1994), 'The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations', BE Communications 5(2), 57-61.
Gowrishankar, R. and Mukherjee, S. (2002). A "pure" boundary node method in potential theory. Communications in Numerical Methods in Engineering 18:411-427.
Gray, L.J. (1989). Boundary element method for regionswith thin internal cavities. Engineering Analysis with Boundary Elements 6:180-184.
Gray, L.J., Martha, L.F. and Ingraffea, A.R. (1990). Hypersingular integrals in boundary element fracture analysis. International Journal for Numerical Methods in Engineering 29:1135-1158.
Gray, L.J., Balakrishna, C. and Kane, J.H. (1995). Symmetric Galerkin fracture analysis. Engineering Analysis with Boundary Elements 15:103- 109.
Gray, L.J. and Paulino, G.H. (1997). Symmetric Galerkin boundary integral formulation for interface and multizone problems. International Journal for Numerical Methods in Engineering 40:3085-3101.
Gray, L.J. and Paulino, G.H. (1997). Symmetric Galerkin boundary integral fracture analysis for plane orthotropic elasticity. Computational Mechanics 20:26-33.
Gray, L.J. and Paulino, G.H. (1998). Crack tip interpolation revisited. SIAM Journal of Applied Mathematics 58:428-455.
Guidera, J.T. and Lardner, R.W. (1975). Penny shaped cracks. Journal of Elasticity 5:59-73.
Guiggiani, M. (1994). Hypersingular formulation for boundary stress evaluation. Engineering Analysis with Boundary Elements 13:169-179.
Galeao, A. C. and do Carmo, E. G. D. (1988), A consistent approximate upwind Petrov-Galerkin method for convection dominated problems, Comput. Methods Appl. Mech. Eng. 68(1), 83-95.
Gear, C. W. (1971), Numerical initial value problems in ordinary differential equations, Prentice Hall, Englewood Cliffs, NJ.
Giles, M. B. (1997), Stability analysis of a Galerkin/Runge-Kutta Navier-Stokes discretisation on unstructured tetrahedral grids, J. Comput. Phys. 132(2), 201-214.
Girault, V. and Raviart, P.-A. (1986), Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin.
Giuliani, S. (1982), 'An algorithm for continuous rezoning of the hydrodynamic grid in Arbitrary Lagrangian-Eulerian computer codes\Nucl. Eng. Des. 72, 205-212.
Glowinski, R. (1984), Numerical methods for nonlinear variational problems, Springer-Verlag, New York.
Glowinski, R. and LeTallec, P. (1989), Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Godlewski, E. and Raviart, P.-A. (1996), Numerical Approximation of Hyperbolic Systems of Conservation Laws, Vol. 118 of Springer Series in Applied Mathematical Sciences, Springer-Verlag, Berlin.
Godunov, S. K. (1959), 'A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics', Afar. Sb. (N.SJ41 (89).
Gresho, P. M. (1990), 'On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. I. Theory', Int. J. Numer. Methods Fluids 11(5), 587-620.
Gresho, P. M. and Lee, R. L. (1979), 'Don't suppress the wiggles-they're telling you something!', in T. J. R. Hughes, ed., Finite element methods for convection dominated flows, AMD - Vol. 34, Presented at the Winter Annual Meeting of the ASME, Amer. Soc. Mech. Engrs. (ASME), New York, pp. 37-61.
Gresho, P. M. and Sani, R. L. (1987), 'On pressure boundary conditions for the incompressible Navier-Stokes equations', Int. J. Numer. Methods Fluids 7(10)
Gresho, P. M. and Sani, R. L. (2000), Incompressible flow and the finite element method. Vol. 1: Advection diffusion. Vol. 2: Isothermal laminar flow, John Wiley & Sons, Chichester.
Griffiths, D. F. and Mitchell, A. R. (1979), 'On generating upwind finite element methods', in T. J. R. Hughes, ed., Finite element methods for convection dominated flows, AMD - Vol. 34, Presented at the Winter Annual Meeting of the ASME, Amer. Soc. Mech. Engrs. (ASME), New York, pp. 91-104.
Guermond, J.-L. (1999a), 'Stabilisation par viscosite de sous-maille pour 1'approximation de Galerkin des operateurs lineaires monotones', Comptes RendusAcad. Sci. Ser. I-Math. 328(7), 617-622.
Guerrnond, J.-L. (1999b), 'Stabilization of Galerkin approximations of transport equations by subgrid modeling', ESAIM-Math. Model. Numer. Anal. 33(6), 1293-1316.
Guermond, J.-L. and Quartapelle, L. (1997), 'Calculation of incompressible viscous flow by an unconditionally stable projection FEM', J. Comput. Phys. 132(1), 12- 33.
Guermond, J.-L. and Quartapelle, L. (1998a), 'On stability and convergence of projection methods based on pressure Poisson equation', Int. J. Numer. Methods Fluids 26(9), 1039-1053.
Guermond, J.-L. and Quartapelle, L. (1998b), 'On the approximation of the unsteady Navier-Stokes equations by finite element projection methods', Numer. Math. 80(2), 207-238.
Gunzburger, M. D. (1989), Finite element methods for viscous incompressible flows. A guide to theory, practice, and algorithms, Academic Press, Boston, MA. Hairer, E., N0rsett, S. P. and Wanner, G. (1993), Solving ordinary differential equations.
Gipson, G. S. (1987), Boundary Element Fundamentals - Basic Concepts And Recent Developments In The Poisson Equation, Computational Mechanics Publications.
Gipson, G. S., Reible, D. D. & Savant, S. A. (1987), Boundary elements and perturbation theory for certain classes of hyperbolic and parabolic problems, in C. A. Brebbia,W. L.Wendland
Ghaboussi, J. (1992) Some theoretical and computational aspects of large scale discrete element. Rock mechanics. In Proceedings of the 33rd U.S. symposium, Tillerson, J.R. and Wawersik, W.R. (Eds.), Balkema, 33, 619-628.
Ghaboussi, J. and Barbosa, R. (1990) Three-dimensional discrete element method for granular materials. Int. J. Numer. Anal. Meth. Geomech. 14, 451-472.
Goodman, R.E. and Shi, G.H. (1985) Block Theory and its Application to Rock Engineering. Prentice-Hall, New Jersey.
Goodman, R.E., Taylor, R. and Brekke, T.L. (1968) A model for the mechanics of jointed rock. J. Soil Mech. Found. Div. ASCE, 94, 637-660.
Gregory, C.E. (1973) Explosives for North American Engineers. Trans Tech Publications, Cleveland, OH.
Gupta, K.K. and Meek, J.L., Finite Element Multidisciplinary Analysis, Reston: AIAA (2000).
Georg, K., Numerical integration of Davidenko equation, Lecture Notes in Mathematics- Nurnericul Solution of Nonlinear Equations, ed. H. B. Keller, pp.
Geradin, M., Idelsohn, S. & Hogge, M., Computational strategies for the solution of large non-linear problems via quasi-Newton methods, Compututionul Methods in Nonlinrar Structurul and Solid Mechanics., ed. A. K. Noor et al., Pergamon, pp. 73-82
Gierlinski, J. T. & Graves-Smith, T. R., A variable load iteration procedure for thin-walled structures, Computcm & Structures, 21, 1085- 1094 (1985).
Gill, P. E. & Murray, W., Safeguarded Step-length Algorithms for Optimisations Using Descent Methods, National Physical Laboratory Report NAL 37 (1974).
Gill, P. E. & Murray, W., Quasi-Newton methods for unconstrained optimisation, J . Inst. Muth. Appl., 9, 9 1 - 108 ( I 972).

H

Harlow, F. H., Shannon, J. P. and Welch, J. E. (1965). Liquid waves by computer. Science, 149, 1092-3.
Harrington, R.F. (1993). Field Computation by Moment Methods. IEEE Press, Piscataway, NJ.
Hartmann, F. (1989). Introduction to Boundary Elements : Theory and Applications. Springer Verlag, Berlin, New York.
Haug, E.J., Choi, K.K. and Komkov, V. (1986). Design Sensitivity Analysis of Structural Systems. Academic Press, New York.
Hayami, K. and Matsumoto, H. (1994). A numerical quadrature for nearly singular boundary element integrals. Engineering Analysis with Boundary
Heck, A. (1993). Introduction to Maple. Springer Verlag, New York.
Hughes, T.J.R., The Finite Element Method, Mineola: Dover Publications (2003).
Hughes, T.J.R. (2000). The Finite Element Method - Linear Static and Dynamic Finite Element Analysis. Dover, Mineola, NY.
Hockney, R.W. and Eastwood, J. W. (1988). Computer Simulation using Particles. Adam Hilger: Bristol.
Hinton, E. and Owen, D.R.J., Finite Element Programming, London: Academic Press (1977).
Harten, A. (1983), 'High resolution schemes for hyperbolic conservation laws', J. Comput. Phys. 49(3), 357-393.
Harten, A. (1997), 'High resolution schemes for hyperbolic conservation laws', J.Comput. Phys. 135(2), 259-278. With an introduction by Peter Lax, Commemoration of the 30th anniversary of J. Comput. Phys.
Harten, A., Hyman, J. M. and Lax, P. D. (1976), 'On finite-difference approximations and entropy conditions for shocks', Commun. Pure Appl. Math. 29(3), 297-322. With an appendix by B. Keyfitz.
Harten, A. and Tal-Ezer, H. (1981), 'On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. I. Nonstiff strongly dynamic problems', Math. Comput. 36(154), 353-373.
Hauke, G. and Hughes, T. J. R. (1998), 'A comparative study of different sets of variables for solving compressible and incompressible flows', Comput. Methods Appl. Mech. Eng. 153(1-2)
Heinrich, J. C., Huyakorn, P. S., Zienkiewicz, O. C. and Mitchell, A. R. (1977), 'An "upwind" finite element scheme for two-dimensional convective transport equation', Int. J. Numer. Methods Eng. 11(1), 131-143.
Heinrich, J. C., Marshall, R. S. and Zienkiewicz, O. C. (1978), 'Penalty function solution of coupled convective and conductive heat transfer', in C. Taylor, K. Morgan and C. Brebbia, eds, Numerical Methods in Laminar and Turbulent Flows, Pentech Press, pp. 435-447.
Heinrich, J. C. and Zienkiewicz, O. C. (1979), 'The finite element method and "upwinding" techniques in the numerical solution of convection dominated flow problems', in T. J. R. Hughes, ed., Finite element methods for convection dominated flows, AMD - Vol. 34, Presented at the Winter Annual Meeting of the ASME, Amer. Soc. Mech. Engrs. (ASME), New York, pp. 105-136.
Heywood, J. G. and Rannacher, R. (1982), 'Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization' , SI AM J. Numer. Anal. 19(2), 275-311 .
Heywood, J. G. and Rannacher, R. (1986), 'Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time', SIAMJ. Numer. Anal. 23(4), 750-777.
Heywood, J. G. and Rannacher, R. (1988), 'Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization', SIAMJ. Numer. Anal. 25(3), 489-512.
Heywood, J. G. and Rannacher, R. (1990), 'Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization', SIAMJ. Numer. Anal. 27(2), 353-384.
Hirsch, C. (1990), Numerical computation of internal and external flows. Vol. 2: Computational methods for inviscid and viscous flows, Wiley Series in Numerical Methods in Engineering, John Wiley & Sons, Chichester.
Hiit, C. W., Amsden, A. A. and Cook, J. L. (1974), 'An Arbitrary Lagrangian-Eulerian computing method for all flow speeds', J. Comput. Phys. 14(3), 227-253.
Hirt, C. W., Amsden, A. A. and Cook, J. L. (1997), 'An Arbitrary Lagrangian-Eulerian computing method for all flow speeds', J. Comput. Phys. 135(2), 203-216. Reprinted from ibid. 14, 227-253 (1974).
Huerta, A. and Donea, J. (2002), 'Time-accurate solution of stabilized convectiondiffusion-reaction equations: I - Time and space discretization', Commun. Numer. Methods Eng. 18(8), 565-573.
Huerta, A. and Fernindez-Mendez, S. (2000), 'Enrichment and coupling of the finite element and meshless methods', Int. J. Numer. Methods Eng. 48(11), 1615-1636.
Huerta, A. and Femandez-Me"ndez, S. (2003), 'Time accurate consistently stabilized mesh-free methods for convection dominated problems', Int. J. Numer. Methods Eng. 59(9), 1225-1242.
Huerta, A. and Liu, W. K. (1988), 'Viscous flow with large free surface motion', Comput. Methods Appl. Mech. Eng. 69(3), 277-324.
Huerta, A., Rodriguez-Ferran, A., Diez, P. and Sarrate, J. (1999), 'Adaptive finite element strategies based on error assessment', Int. J. Numer. Methods Eng 46(10), 1803-1818.
Huerta, A., Roig, B. and Donea, J. (2002), 'Time-accurate solution of stabilized convection-diffusion-reaction equations: II - Accuracy analysis and examples', Commun. Numer. Methods Eng. 18(8), 575-584.
Hughes, T. J. R. (1978), 'A simple scheme for developing "upwind" finite elements', Int. J. Numer. Methods Eng. 12(9), 1359-1365.
Hughes, T. J. R. (1995), 'Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods', Comput. Methods Appl. Mech. Eng. 127(1-4), 387-401.
Hughes, T. J. R. (2000), The finite element method: linear static and dynamic finite element analysis, Dover Publications, New York. Corrected reprint of the 1987 original [Prentice Hall, Englewood Cliffs, NJ]. Hughes, T. J. R. and Brooks, A. (1979), 'A multidimensional upwind scheme with no crosswind diffusion', in T. J. R. Hughes, ed., Finite element methods for convection dominated flows, AMD - Vol. 34, Presented at the Winter Annual Meeting of the ASME, Amer. Soc. Mech. Engrs. (ASME), New York, pp. 19-35.
Hughes, T. J. R. and Brooks, A. N. (1982), 'A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure', in R. H. Gallagher, D. H. Nome, J. T. Oden
Hairer, E. and Wanner, G. (1996), Solving ordinary differential equations. Vol. II. Stiff and differential-algebraic problems, second edn, Springer-Verlag, Berlin.
Hannani, S. K., Stanislas, M. andDupont, P. (1995), 'Incompressible Navier-Stokes computations with SUPG and GLS formulations', Comput. Methods Appl. Mech. Eng. 124(1-2), 153-170.
Hansbo, P. (1993), 'Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables', J. Comput. Phys. 109(2), 274-288.
Hansbo, P. and Johnson, C. (1991), 'Adaptive streamline diffusion methods for compressible flows using conservation variables', Comput. Methods Appl. Mech. Eng. 87(2-3), 267-280.
Hansbo, P. and Szepessy, A. (1990), 'A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations', Comput. Methods Appl. Mech. Eng. 84(2), 175-192.
Harari, L, Frey, S. and Franca, L. P. (2002), 'A note on a recent study of stabilized finite element computations for heat conduction', Comput. Mech. 28(1), 63-65.
Harari, I. and Hughes, T. J. R. (1994), 'Stabilized finite element methods for steady advection-diffusion with production', Comput. Methods Appl. Mech. Eng. 115(1-2), 165-191.
Hughes, T. J. R., Feijoo, G. R., Mazzei, L. and Quincy, J.-B. (1998), 'The variational multiscale method - a paradigm for computational mechanics', Comput. Methods Appl. Mech. Eng. 166(1-2), 3-24.
Hughes, T. J. R. and Franca, L. P. (1987), 'A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces', Comput. Methods Appl. Mech. Eng. 65(1), 85-96.
Hughes, T. J. R., Franca, L. P. and Hulbert, G. M. (1989), 'A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations', Comput. Methods Appl. Mech. Eng. 73(2), 173-189.
Hughes, T. J. R., Franca, L. P. and Mallet, M. (1987), 'A new finite element formulation for computational fluid dynamics. VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multidimensional advectivediffusive systems', Comput. Methods Appl. Mech. Eng. 63(1), 97-112.
Hughes, T. J. R., Liu, W. K. and Brooks, A. (1979), 'Finite element analysis of incompressible viscous flows by the penalty function formulation', J. Comput. Phys. 30(1), 1-60.
Hughes, T. J. R., Liu, W. K. and Zimmermann, T. K. (1978), 'Lagrangian-Eulerian finite element formulation for incompressible viscous flows', U.S.-Japan Seminar on Interdisciplinary Finite Element Analysis, Cornell University, Ithaca, NY.
Hughes, T. J. R. and Mallet, M. (1986a), 'A new finite element formulation for computational fluid dynamics. III. The generalized streamline operator for multidimensional advective-diffusive systems', Comput. Methods Appl. Mech. Eng. 58(3), 305-328.
Hughes, T. J. R. and Mallet, M. (1986b), 'A new finite element formulation for computational fluid dynamics. IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems', Comput. Methods Appl. Mech. Eng. 58(3), 329-336.
Hughes, T. J. R., Mazzei, L. and Jansen, K. E. (2000), 'Large eddy simulation and variational multiscale method', Computing and Visualization in Science 3(1/2), 47-59.
Hughes, T. J. R., Mazzei, L., Oberai, A. O. and Wray, A. A. (2001), 'The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence', Phvs. Fluids 13(2), 505-512.
Hughes, T. J. R. and Tezduyar, T. E. (1984), 'Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations', Comput. Methods Appl Mech. Eng. 45(1-3), 217-284.
Hughes, T. J. R., Tezduyar, T. E. and Brooks, A. N. (1982), 'A Petrov Galerkin finite element formulation for systems of conservation law with special reference to the compressible Euler equations', in K. W. Morton and M. J. Baines, eds, Numerical methods for fluid dynamics, (Reading 1982), Academic Press, London, pp. 97-125.
Hakuno, M. and Hirao, T. (1973) A trial related to random packing of particle assemblies. Proc. JSCE.
Hazzard, J.F., Young, P.F. and Maxwell, S.C. (2000) Micromechanical modeling of cracking and failure in brittle rocks, J. Geophys. Res. 105(B7), 16683-16697.
Herrmann, H.J. (1991) Patterns and scaling in fracture. In Fracture Processes in Concrete, Rock and Ceramics, Chapman & Hall, New York.
Hocking, G. (1993) Collision impact of a ship with multi-year sea ice. 2nd Int. Conf. on Discrete Element Methods, MIT, Cambridge, MA.
Hocking, G., Mustoe, G.G.W. and Williams, J.R. (1988) Dynamic analysis for generalized three dimensional contact and fracturing of multiple bodies, INTERA Technologies, Inc.
Hocking, G., Mustoe, G.G.W. and Williams, J.R. (1987) Two and three dimensional contact and fracturing of multiple bodies. NUMETA '87 Numerical Methods in Engineering, Theory and Application, A.A. Balkema, Rotterdam.
Hocking, G., Mustoe, G.G.W. and Williams, J.R. (1985) Validation of the CICE discrete element code for ice ride-up and ice ridge cone interaction. ASCE Speciality Conference, ARCTIC '85, San Francisco.
Hocking, G. (1989) The discrete element method for analysis of fragmentation and discontinua. Proc. 1st Conf. DEM, Golden, CO.
Hocking, G. (1992) The discrete element method for analysis of fragmentation of discontinua. Eng. Computations, 2, 145-155.
Hocking, G., Williams, J.R. and Mustoe, G.G.W. (1985) Validation of the CICE discrete element code for ice ride-up and ice ridge/cone interaction. ARCTIC '85, ASCE, San Francisco.
Hocking, G., Williams, J.R. and Mustoe, G.G.W. (1985) CICE Model Validation Project. AOGA Project No. 231.
Hocking, G. (1977) Development and Application of the Boundary Integral and Rigid Block Methods for Geotechnics, PHD thesis, Imperial College.
Hocking, G., Mustoe, G.G.W. and Williams, J.R. (1985) CICE discrete element analysis code-theoretical manual. Applied Mechanics Inc., Lakewood, CO.
Hocking, L.M. (1964) The behavior of clusters of spheres falling in a viscous fluid. Part2 Slow motion theory. J. Fluid Mech. 20, 129-139.
Hopkins, M.A. and Louge, M.Y. (1991) Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A, 3(1), 47-57.
Hopkins, M.A., Daly, S.F. and Lever, J.H. (1996) Three-dimensional simulation of river ice jams. Proceedings of the 8th International Specialty Conference on Cold Regions Engineering, Fairbanks, AK
Hughes, T.J.R. (1983) Analysis of transient algorithms with particular reference to stability behavior. In Computational Methods for Transient Analysis, Vol. 1.

I

Itagaki, M. Brebbia, C. A. (1993), 'Generation of higher order fundamental solutions to the twodimensional modified Helmholtz equation', Engineering Analysis With Boundary Elements 11(1), 87-90.
Idelsohn, S., Nigro, N., Storti, M. and Buscaglia, G. (1996), 'A Petrov-Galerkin formulation for advection-reaction-diffusion problems', Comput. Methods Appl. Mech. Eng. 136(1-2), 27-46.
Ilinca, R, Hetu, J.-F. and Peletier, D. (2000), 'On stabilized finite element formulations for incompressible advective-diffusive transport and fluid flow problems', Comput. Methods Appl. Mech. Eng. 188(1-3), 235-255.
Isaacson, E. and Keller, H. B. (1994), Analysis of numerical methods, Dover Publications, New York. Corrected reprint of the 1966 original [John Wiley & Sons, New York].
Iwashita, K. and Hakuno, M. (1988) Granular assembly simulation for dynamic cliff collapse due to earthquake. Proc. 9th World Conf. on Earthquake Eng., 3, 175-180, Tokyo-Kyoto.
Irons, B. & Elsawaf, A., The conjugate-Newton algorithm for solving finite element equations, Proc. US-German Symp. on Formulations und Algorithms in Finite Element Analysis, ed. K. J. Bathe et U/., MIT, 656-672 (1977).
Irons BM (1976) "The semiloof shell element, finite elements for thin shells and curved members", (Eds. D.G. Ashwell, R.H. Gallagher) John Wiley London, 197-222
Irons BM, Razzaque A (1972) "Experience with the patch test for convergence of finite elements", In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (Aziz AK Ed.) Academic Press, New York, 557-587

J

Jameson, A. (1985), 'Numerical solution of the Euler equations for compressible inviscid fluids', in F. Angrand, A. Dervieux, J. A. Desideri and R. Glowinski, eds, Numerical methods for the Euler equations of fluid dynamics, SIAM, Philadelphia, pp. 199-245. Proceedings of the INRIA Workshop, Rocquencourt, 1983.
Jameson, A., Schmidt, W. and Turkel, E. (1981), 'Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes', AIAA Computational Fluid Dynamics Conference, San Diego. Paper 81-1259.
Jamet, P. (1978), 'Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain', SIAM.
Jansen, K. E., Collis, S. S., Whiting, C. and Shakib, F. (1999), 'A better consistency for low-order stabilized finite element methods', Comput. Methods Appl. Mech. Eng. 174(1-2), 153-170.
Jacota, A. and Dawson, P.R. (1988) Micromechanical modeling of powder compacts - I. Unit problems for sintering and traction induced deformation, Acta Metall. 36(9), 2551-2561.
Jayaweera, K.O.L.F., Mason, B.J. and Slack, G.W. (1964) The behavior of clusters of spheres falling in a viscous fluid. Part 1 Experiment. J. Fluid Mech. 20, 121-128.
Jenkins, J.T. and Savage, S.B. (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187-202.
Jensen, R.P., Bosscher, P.J., Plesha, M.E. and Edil, T.B. (1999) DEM simulation of granular media - Structure interface: effects of surface roughness and particle shape. Int. J. Num. Anal. Meth.
Jeans, J. (1919). Problems of Cosmogony and Stellar Dynamics. Cambridge University Press: Cambridge.
Jiang, B.-n. (1998), The least-squares finite element method. Theory and applications in computational fluid dynamics and electromagnetics, Springer-Verlag, Berlin.
Jiang, C. B. and Kawahara, M. (1993), 'The analysis of unsteady incompressible flows by a three-step finite element method', Int. J. Numer. Methods Fluids 16(9), 793-811.
Johansson, C.H. and Persson, P.A. (1970) Detonics of High Explosives. Academic Press, London.
Jorgenson, G.K. and Chung, S.H. (1987) Blast simulation - surface and underground with SABREX model. CIM Bulletin, 37-41.
John, F. (1991), Partial differential equations, fourth edn, Springer-Verlag, New York.
Johnson, C. (1987), Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge.
Johnson, C., Navert, U. and Pitkaranta, J. (1984), 'Finite element methods for linear hyperbolic equations', Comput. Methods Appl. Mech. Eng. 45(1-3), 285-312.
Johnson, C. and Saranen, J. (1986), 'Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations', Math. Comput. 47(175), 1-18.
Johnson, C., Szepessy, A. and Hansbo, P. (1990), 'On the convergence of shockcapturing streamline diffusion finite element methods for hyperbolic conservation laws', Math. Comput. 54(189), 107-129.
Jennings, A., Development of an ICCG algorithm for large sparse systems, Preconditioning Techniques in Numerical Solution of Partial Differential Equations, ed. D. J. Evans, Gordon & Breach, New York, pp. 426-438 (1983).
Jeusette, J.-P., Laschet, G., & Idelsohn, S., An effective incremental iterative method for static nonlinear structural analysis, Comp. & Struct., 32, 125-135 (1989).
Jin J. The Finite Element Method in Electromagnetics. New York: Wiley, 1993.
Jahn P, Hartmann F (1999) "Integral representations for the deflection and the slope of a plate on an elastic foundation", Journal of Elasticity 56: 145-158
Jahn P, Hartmann F (2002) Numerical Calculation for Plates on an Elastic Foundation. Preprint University of Kassel
Jakobsen B, Rasendahl F, (1994) "The Sleipner platform accident", Structural Engineering International, 3: 190-194
Jeyachandrabose C, Kirkhope J (1985) "An alternative formulation for the DKT plate bending element", Int. J. Num. Methods in Eng. 21: 1289-1293
Jiang B (1998) The Least-Square Finite Element Method. Springer-Verlag Berlin Heidelberg New York
Johnson C (1995) Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press
Johnson C, Hansbo P (1992) "Adaptive finite element methods in computational mechanics", Computer Methods in Appl. Mech. Eng. 101, North-Holland, Amsterdam

K

Kaljevic, I. and Saigal, S. (1997). An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering 40:2953-2974.
Kane, J.H. (1994). Boundary Element Analysis in Engineering Continuum Mechanics. Prentice Hall, Englewood Cliffs, NJ.
Kaplan, W. (1984). Advanced Calculus 3rd. ed. Addison-Wesley, Reading, MA.
Kehr-Candille, V. and Ohayon, R. (1992), 'Elastoacoustic damped vibrations. Finite element and modal reduction methods', in P. Ladeveze and O. Zienkiewicz, eds, New advances in computational structural mechanics (Giens, 1991), Vol. 32 of Studies in Applied Mechanics, Elsevier, Amsterdam, pp. 321-334.
Kelly, D. W., Nakazawa, S., Zienkiewicz, O. C. and Heinrich, J. C. (1980), 'A note of upwinding and anisotropic balancing dissipation in finite element approximation to convective diffusion problems', Int. J. Numer. Methods Eng. 15(9), 1705-1711.
Kita, E. and Kamiya, N. (1994). Recent studies on adaptive boundary element methods. Advances in Engineering Software 19:21-32.
Ko, S.C., Kim, Y.C., Lee, S.S., Choi, S.H. and Kim, S.R. (2003). Micromachined piezoelectric membrane acoustic device. Sensors and Actuators A 103:130-134.
Kothnur, V., Mukherjee, S. and Mukherjee, Y.X. (1999). Two-dimensional linear elasticity by the boundary node method. International Journal of Solids and Structures 36:1129-1147.
Kress, R. (1989). Linear Integral Equations. Springer Verlag.
Krishnamoorthy, C.S. and Umesh, K.R. (1993). Adaptive mesh refinement for two-dimensional finite element stress analysis. Computers and Structures 48:121-133.
Krishnasamy, G., Schmerr, L.W., Rudolphi, T.J. and Rizzo, F.J. (1990). Hypersingular boundary integral equations : some applications in acoustic and elastic wave scattering. ASME Journal of Applied Mechanics 57:404-414.
Krishnasamy, G., Rizzo, F.J. and Rudolphi, T.J. (1992). Hypersingular boundary integral equations: their occurrence, interpretation, regularization and computation. Developments in Boundary Element Methods-7 .
Kulkarni, S.S., Telukunta, S. and Mukherjee, S. (2003). Application of an accelerated boundary-based mesh-free method to two-dimensional problemsin potential theory. Computational Mechanics 32:240-249.
Kawaguchi, T., Tanaka, T. and Tsuji, Y. (1998) Numerical simulation of two-dimensional fluidised beds using discrete element method (comparison between two- and three-dimensional models). Powder Technol. 96, 129-138.
Kelley, C.T. (1995) Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia.
Kernighan, B.W. and Ritchie, D.M. (1988) The C Programming Language. Prentice Hall, New Jersey, 2nd edition.
Kishino, Y. (1987) Disc model analysis of granular media. In Micromechanics of Granular Materials, Satake, M. and Jenkins, J.T. (Eds.), Elsevier, Amsterdam, 143-152.
Kitamura, R. (1981) Analysis of deformation mechanism of particulate material at particle scale. Soils and Foundations, 21(2), 85-97.
Komodromos, P. (2002) On the simulation of deformable bodies using combined discrete and finite element methods. 3rd International Conference on Discrete Element Methods, Santa Fe, NM.
Kreyszig, E. (1983) Advanced Engineering Mathematics. John Wiley & Sons, Chichester. 5th edition.
Kachanov M, Shafiro B, Tsukrov I (2004) Handbook of Elasticity Solutions. Springer-Verlag Berlin Heidelberg New York
Kaliakin VN (2001) Introduction to Approximate Solutions Techniques, Numerical Modeling, and Finite Element Methods. Marcel Dekker Inc., New York
Katsikadelis JT (2002) Boundary Elements: Theory and Applications. Elsevier Science
Kattan PI, Voyiadjis GZ (2002) Damage Mechanics with Finite Elements practical Applications with Computer Tools. Springer-Verlag Berlin Heidelberg New York
Katz C., Stieda (1992) "Praktische FE-Berechnung mit Plattenbalken", Bauinformatik 1: 30-34
Katz C, Werner H (1982) "Implementation of nonlinear boundary conditions in finite element analysis", Computers & Structures 15: 299-304
Katz C (1995) "Kann die FE-Methode wirklich alles?", FEM 95 - Finite Elemente in der Baupraxis. (Eds. Ramm E, Stein E, Wunderlich W), Ernst & Sohn, Berlin
Katz C (1986) "Berechnung von allgemeinen Pfahlwerken", Bauingenieur 61 Heft 12
Katz C (1997) "Fliesszonentheorie mit Interaktion aller Stabschnittgr?o?en bei Stahltragwerken", Stahlbau 66: 205-213
Katz C (1996) "Vertrauen ist gut, Kontrolle ist besser", in: Software f?ur Statik und Konstruktion. (Eds. Katz C, Protopsaltis B) Balkema A.A., Rotterdam
Kelly DW, Gago JP de SR, Zienkiewicz OC, Babu?ska I (1983) "A posteriori error analysis and adaptive processes in the finite element method: part I - error analysis", Int. J. Num. Methods in Eng. 19: 1595-1619
Kojic M, Bathe KJ (2005) Inelastic Analysis of Solids and Structures. Springer-Verlag Berlin Heidelberg New York
Kotsovos MD, Pavlovic MN (1995) Structural Concrete: Finite Element Analysis for Limit-State Design. Telford, London
Krenk S (2001) Mechanics and Analysis of Beams, Columns and Cables. Springer-Verlag Berlin Heidelberg New York (2nd ed.)
Kuhn G, Partheym?uller P (1997) "Analysis of 3D elastoplastic notch and crack problems using boundary element method", n:i Wendland WL Ed., Boundary Element Topics, 99-116. Springer-Verlag Berlin Heidelberg New York
Kuhn G, K?ohler O (1997) "A field boundary formulation for axisymmetric finite strain elastoplasticity", Proceedings of the IUTAM/IACM-Symposium on Approach. Springer-Verlag Berlin Heidelberg New York

L

Lancaster, P. and Salkauskas, K. (1990). Curve and Surface Fitting - An Introduction. Academic Press, London.
Langhaar, H. L. (1980). Dimensional Analysis and Theory of Models. Krieger: Huntingdon, NY.
Lafe, O. E. Cheng, A. H.-D. (1987), 'A perturbation boundary element code for steady state groundwater flow in heterogeneous aquifers', Water Resources Research 23(6), 1079-1084.
Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engg., 19, 59.
Li, G. and Aluru, N.R. (2002). Boundary cloud method: a combined scattered point/boundary integral approach for boundary only analysis. Computer Methods in Applied Mechanics and Engineering 191:2337-2370.
Li, G. and Aluru, N.R. (2003). A boundary cloud method with a cloudby- cloud polynomial basis. Engineering Analysis with Boundary Elements 27:57-71.
Liapis, S. (1995). A review of error estimation and adaptivity in the boundary element method. Engineering Analysis with Boundary Elements 14:315-323.
Liggett, J. A. Liu, P. L.-F. (1979), 'Unsteady flow in confined aquifers: A comparison of two boundary integral methods', Water Resources Research 15(4), 861-866.
Liu, G.R. (2002). Mesh Free Methods - Moving beyond the Finite Element Method. CRC Press, Boca Raton, FL.
Liu, W.K., Chen, Y., Uras, R.A. and Chang, C.T. (1996). Generalized multiple scale reproducing kernel particle methods. Computer Methods in Applied Mechanics and Engineering 139:91-157.
Liu, W.K., Chen, Y., Jun, S., Belytschko, T., Pan, C., Uras, R.A. and Chang, C.T. (1996). Overview and applicationsof the reproducing kernel particle methods. Archives of Computational Methods in Engineering 3,3-80.
Liu, Y.J. and Rizzo, F.J. (1993). Hypersingular boundary integral equations for radiation and scattering of elastic wavesi n three dimensions. Computer Methods in Applied Mechanics and Engineering 107:131-144.
Liu, Y.J., Zhang, D. and Rizzo, F.J. (1993). Nearly singular and hypersingular integrals in the boundary element method. Boundary Elements XV. C.A. Brebbia and J.J. Renciseds ., 453-468,
Liu, Y.J. (1998). Analysis of shell-like structures by the boundary element method based on 3-D elasticity : formulation and verification. International Journal for Numerical Methods in Engineering 41:541-558.
Lutz, E.D. (1991). Numerical Methods for Hypersingular and Near-Singular Boundary Integrals in Fracture Mechanics. Ph.D. Dissertation, Cornell University, Ithaca, NY.
Lutz, E.D., Ingraffea, A.R. and Gray, L.J. (1992). Use of 'simple solutions' for boundary integral methods in elasticity and fracture analysis. International Journal for Numerical Methods in Engineering 35:1737-1751.
Lutz, E., Ye, W. and Mukherjee, S. (1998). Elimination of rigid body modes from discretized boundary integral equations. International Journal of Solids and Structures 35:4427-4436.
Lucy, L. B. (1977). A numerical approach to the testing of a fission hypothesis. Astron. J., 82, 1013.
LeVeque, R. J. (1992), Numerical methods for conservation laws, second edn, Birkhauser-Verlag, Basel.
Li, C. W. (1990), 'Least-squares characteristics and finite elements for advectiondispersion simulation', Int. J. Numer. Methods Eng. 29(6), 1343-1358.
Liu, F. and Jameson, A. (1993), 'Multigrid Euler calculations for three-dimensional cascades', AIAAJ. 31(10), 1785-1791.
Liu, W. K. and Chang, H. (1986), 'On a numerical method for liquid filled systems', Comput. Struct. 23(5), 671-677.
Liu, W. K. and Chang, H. G. (1985), 'A method of computation for fluid structure interaction', Comput. Struct. 20(1-3), 311-320.
Liu, W. K. and Gvildys, J. (1986), 'Fluid-structure interaction of tanks with an eccentric core barrel', Comput. Methods Appl. Mech. Eng. 58(1), 51-77.
Liu, W. K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), 'Reproducing kernel particle methods for structural dynamics', Int. J. Numer. Methods Eng. 38(10), 1655-1679.
Lohner, R., Morgan, K. and Peraire, J. (1985), 'A simple extension to multidimensional problems of the artificial viscosity due to Lapidus', Commun. Numer. Methods Eng. 1(4), 141-147.
Ladeveze, P. and Pelle, J.-P. (2001), La mattrise du calcul en mecanique lineaire et non lineaire, Hermes Science, Paris.
Ladyzhenskaya, O. A. (1969), The mathematical theory of viscous incompressible flow, Gordon and Breach Science, New York.
Lamb, H. (1993), Hydrodynamics, sixth edn, Cambridge University Press, Cambridge. Reprint of the 1932 edition.
Lambert, J. D. (1991), Numerical methods for ordinary differential equations. The initial value problem, John Wiley & Sons, Chichester.
Landau, L. D. and Lifshitz, E. M. (1959), Fluid mechanics, Pergamon Press, London.
Lapidus, A. (1967), A detached shock calculation by second order finite differences., J. Comput. Phys. 2, 154-177.
Lasaint, P. and Raviart, P.-A. (1974), 'On a finite element method for solving the neutron transport equation', Mathematical aspects of finite elements in partial differential equations, Math. Res. Center, University of Wisconsin-Madison, Academic Press, New York, pp. 89-123. Publication No. 33. Proceedings of the Symposium, Madison, 1974.
Laval, H. (1988), Taylor-Galerkin solution of the time-dependent Navier-Stokes equations', in H. Niki and M. Kawahara, eds, Computational Methods in Flow Analysis, Okayama University of Science, pp. 414-421.
Laval, H. and Quartapelle, L. (1990), 'A fractional-step Taylor-Galerkin method for unsteady incompressible flows', Int. J. Numer. Methods Fluids 11(5), 501-513.
Leonard, B. P. (1979), 'A survey of finite differences of opinion on numerical muddling of the incomprehensible defective confusion equation', in T. J. R. Hughes, ed.. Finite element methods for convection dominated flows, AMD - Vol. 34,
Lewis, R.W. and Schrefler, B.A. (1998) The Finite Element Method in the Static and Dynamics Deformation and Consolidation of Porous Media. John Wiley & Sons, Chichester, 2nd Ed.
Lian, J. and Shima, S. (1994) Powder assembly simulation by particle dynamics method. Int. J. Num. Meth. Eng. 37, 763-775.
Lifshitz, E.M. (1956) The theory of molecular attractive forces between solids. Soviet Physics, 2(1), 73-83.
Lin, J.S. (1995) Continuous and discontinuous analysis using the manifold method,' Proceeding Working Forum on the Manifold Analysis. Vol. 1, 1-20, Geotechnical Lab, US Army Engineers Waterways Experiment Station.
Livesley, R.K. (1978) Limit analysis of structures formed from rigid blocks. Int. J. Num. Meth. in Eng. 12, 1853-1871.
Lloyd, S. (2000) Ultimate physical limits to computation. Nature, 406, 1047-1054.
Londe, P. (1987) The Malpasset Dam Failure. Engineering Geology, 24, 295-529.
Lorenz, A., Tuozzolo, C. and Louge, M.Y. (1995) Measurements of impact properties of small, nearly spherical particles. Experimental Mechanics, 37(3), 292-298.
Lewis, R.W., Morgan, K., Thomas, H.L. and Seetharamu, K.N. (1996) The Finite Element Method in Heat Transfer Analysis, John Wiley & Sons Ltd., Chichester, England.
Liao, G. and Liu, H. (1993) Existence and C(0,?) regularity of a minimum of a functional related to grid generation problems. Num. Math. PDEs. 9, 3.
Liseikin, V.D. (1999) Grid Generation Methods, Springer-Verlag, Berlin, Heidelberg.

M

Mackerele, J. (1993). Mesh generation and refinement for FEM and BEM - a bibliography (1990-1993). Finite Elements in Analysis and Design 15:177-188.
Martin, P.A. and Rizzo, F.J. (1996). Hypersingular integrals : how smooth must the density be ? International Journal for Numerical methods in Engineering 39:687-704.
Martin, P.A., Rizzo, F.J. and Cruse, T.A. (1998). Smoothness-relaxation strategies for singular and hypersingular integral equations. International Journal for Numerical Methods in Engineering 42:885-906.
Mantic, V. (1993). A new formula for the C-matrix in the Somigliana identity. Journal of Elasticity 33:191-201.
Menon, G. (1996). Hypersingular Error Estimates in Boundary Element Methods. M.S. Thesis, Cornell University, Ithaca, NY.
Menon, G., Paulino, G.H. and Mukherjee, S. (1999). Analysis of hypersingular residual error estimates in boundary element methods for potential problems. Computational Methods in Applied Mechanics and Engineering 173:449-473.
Moes, N., Dolbow, J. and Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46:131-150. [98] Mukherjee, S. (1982). Boundary Element Methods in Creep and Fracture. Elsevier, London.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines. Chem. Phys., 21, 1087.
Mukherjee, S. and Mukherjee, Y. X. (1998). The hypersingular boundary contour method for three-dimensional linear elasticity. ASME Journal of Applied Mechanics 65:300-309.
Mukherjee, S., Shi, X. and Mukherjee, Y.X. (1999). Surface variablesand their sensitivities in three-dimensional linear elasticity by the boundary contour method. Computer Methods in Applied Mechanics and Engineering 173:387-402.
Mukherjee, S. (2000). CPV and HFP integralsand their applicationsin the boundary element method. International Journal of Solids and Structures 37:6623-6634.
Mukherjee, S. (2000). Finite parts of singular and hypersingular integrals with irregular boundary source points. Engineering Analysis with Boundary Elements 24:767-776.
Mukherjee, S., Shi, X. and Mukherjee, Y.X. (2000). Internal variables and their sensitivities in three-dimensional linear elasticity by the boundary contour method. Computer Methods in Applied Mechanics and Engineering 187:289-306.
Mukherjee, S., Chati, M.K. and Shi, X. (2000). Evaluation of nearly singular integralsin boundary element contour and node methodsfor threedimensional linear elasticity. International Journal of Solids and Structures 37:7633-7654.
Mukherjee, S. (2001). On boundary integral equationsfor cracked and for thin bodies. Mathematics and Mechanics of Solids 6:47-64.
Mukherjee, S. (2002). Regularization of hypersingular boundary integral equations : a new approach for axisymmetric elasticity. Engineering Analysis with Boundary Elements 26:839-844.
Mukherjee, Y.X. and Mukherjee, S. (1997). The boundary node method for potential problems. International Journal for Numerical Methods in Engineering 40:797-815.
Mukherjee, Y.X. and Mukherjee, S. (1997). On boundary conditionsin the element-free Galerkin method. Computational Mechanics 19:264-270.
Mukherjee, Y.X., Mukherjee, S., Shi, X. and Nagarajan, A. (1997). The boundary contour method for three-dimensional linear elasticity with a new quadratic boundary element. Engineering Analysis with Boundary Elements 20:35-44.
Mukherjee, Y.X., Shah, K. and Mukherjee, S. (1999). Thermoelastic fracture mechanicswith regularized hypersingular boundary integral equations. Engineering Analysis with Boundary Elements 23:89-96.
Mukherjee, Y.X. and Mukherjee, S. (2001). Error analysis and adaptivity in three-dimensional linear elasticity by the usual and hypersingular boundary contour method. International Journal of Solids and Structures 38:161-178.
Malkus, D. S. and Hughes, T. J. R. (1978), 'Mixed finite element methods - reduced and selective integration techniques: a unification of concepts', Comput. Methods Appl. Mech. Eng. 15(1), 63-81.
Marchuk, G. I. (1982), Methods of numerical mathematics, second edn, Springer-Verlag, New York. Translated from the Russian by Arthur A. Brown.
Marchuk, G. I. (1990), 'Splitting and alternating direction methods', in P. G. Ciarlet and J.-L. Lions, eds, Handbook of numerical analysis, Vol. I, North-Holland, Amsterdam, pp. 197-462.
Marshall, R. S., Heinrich, J. C. and Zienkiewicz, O. C. (1978), 'Natural convection in a square enclosure by a finite element penalty function method using primitive fluid variables', J. Num. Methods in Heat Transfer 1, 315-330.
Masud, A. and Hughes, T. J. R. (1997), 'A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems', Comput. Methods Appl. Mech. Eng. 146(1-2), 91-126.
Melenk, J. M. and BabuSka, I. (1996), 'The partition of unity finite element method: basic theory and applications', Comput. Methods Appl. Mech. Eng. 139(1-4), 289-314.
Minev, P. D. (2001), 'A stabilized incremental projection scheme for the incompressible Navier-Stokes equations', Int. J. Numer. Methods Fluids 36(4), 441-464.
Mitchell, A. R. and Griffiths, D. F. (1980), The finite difference method in partial differential equations, John Wiley & Sons, Chichester.
Moran, H. J. P. and Ohayon, R. (1979), 'Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results', Int. J. Numer. Methods Eng. 14(5), 741-755.
Morton, K. W. (1982), 'Schock capturing, fitting and recovery', in E. Krause, ed., Eigth International Conference on Numerical Methods in Fluid Dynamics, Vol. 170 of Lecture Notes in Phys., Springer-Verlag, Berlin, pp. 77-93.
Morton, K. W. (1983), 'Characteristing Galerkin methods for hyperbolic problems', in M. Pandolfi and R. Piva, eds, Fifth GAMM Conference on Numerical Methods in Fluid Dynamics, Vieweg, Braunschweig, pp. 243-250.
Morton, K. W. (1985), 'Generalised Galerkin methods for hyperbolic problems', Comput. Methods Appl. Mech. Eng. 52(1-3), 847-871.
Morton, K. W. (1996), Numerical Solution of Convection-Diffusion Problems, Vol. 12 of Applied mathematics and mathematical computation, R.J. Knops and K.W.
Morton, eds, Chapman & Hall, London.
Morton, K. W. and Parrott, A. K. (1980), 'Generalised Galerkin methods for first-order hyperbolic equations', J. Comput. Phys. 36(2), 249-270.
Mastin, C.W. (1991) Elliptic grid generation and conformal mapping. In: Castillo, J.E. (ed.) Mathematical Aspects of Numerical Grid Generation. SIAM, Philadelphia.
Mastin, C.W. and Thompson, J.F. (1984) Quasiconformal mappings and grid generation, SIAM J. Sci. Stat.Comput., 5, 305-310.
Mandel, J. (1963) Tests on reduced scale models in soil and rock mechanics - a study of the conditions of similitude. Int. J. Rock Mech. Mining Sci. 1, 31-42.
Margolin, L.G. (1984) Generalized Griffith criteria for crack propagation. Eng. Frac. Mech. 19, 539-543. 142. Mazzone, D.N., Tardos, G.I. and Pfeffer, R. (1986) The effect of gravity on the shape and strength of a liquid bridge between two spheres. J. Colloid Interface Sci. 113, 544-556.
Meguro, K. and Hakuno, M. (1988) Fracture analysis of concrete structure by granular assembly simulation. Bulletin of the Earthquake Research Institute, 63(4), 409-468 (in Japanese).
Metcalfe, G., Shinbrot, T., McCarthy, J.J. and Ottino, J.M. (1995) Avalanche mixing of granular solids. Nature, 374, 39-41.
Minty, E.J. and Kearns, O.K. (1983) Rock mass workability. In Collected case studies in Engineering Geology, Hydrogeology, Environmental Geology, Knight, M.J., Minty, E.J. and Smith, R.B. (Eds.), 59-81.
Mishra, B.K. and Murty, C.V.R. (2001) On the determination of contact parameters for realistic simulation of tumbling mills. Powder Technology, 115, 290-297.
Mroz, Z. and Zubelewicz, A. (1982) On initiation of flow of granular materials from hoppers. In Deformation and Failure of Granular Materials, Vermeer, P.A. and Lucrer, H.J. (Eds.), Balkema, 569-577.
Muhlhaus, H.B. and Vardoulakis, I. (1987) The thickness of shear bands in granular materials. Geotechnique, 37(3), 271-283.
Muhlhaus, H.B. (1989) Application of Cosserat theory in numerical solutions of limit load problems. Ing.- Archiv., 59(2), 124-137.
Munjiza, A. (1999) Fracture, fragmentation and rock blasting models in the combined finite-discrete element method. In Fracture of Rock. Computational Mechanics Publications.
Munjiza, A., Latham, J.P. and John, N.W.M. (2003) 3D dynamics of discrete element systems comprising irregular discrete elements. Int. J. Num. Methods Eng. 56, 35-55.
Munjiza, A. and John, N.W.M. (2001) Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms, Eng. Fract. Mech. 69(2), 281-295.
Munjiza, A. and Andrews, K.R.F. (2000) Discretised penalty function method in combined finite-discrete element analysis. Int. J. Num. Meth. Eng. 49, 1495-1520.
Munjiza, A. and Andrews, K.R.F. (2000) Detonation gas model for combined finite-discrete element modelling of fracture and fragmentation. Int. J. Num. Meth. Eng. 49, 1377-1396.
Munjiza, A., Andrews, K.R.F. and White, J.K. (1999) Combined single and smeared crack model in combined finite-discrete element method. Int. J. Num. Meth. Eng. 44, 41-57.
Munjiza, A., Latham, J.P. and Andrews, K.R.F. (1999) Challenges of a coupled combined finite-discrete element approach to explosive induced rock fragmentation. FRAGBLAST - Int. J. Fragmentation and Blasting, 3, 237-250.
Munjiza, A. and Andrews, K.R.F. (1998) NBS contact detection algorithm for bodies of similar size. Int. J. Num. Meth. Eng., 43, 131-149.
Munjiza, A. and Owen, D.R.J. (1998) A Km proportional damping in explicit integration of dynamic structural systems. Int. J. Num. Meth. Eng. 41, 1277-1296.
Munjiza, A., Owen, D.R.J. and Bicanic, N. (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Int. J. Eng. Computations, 12, 145-174.
Munjiza, A. and Latham, J.P. (2002) Grand challenge of discontinuous deformation analysis, plenary lecture. 5 th Int. Conf. on Analysis of Discontinuous Deformation, Israel.
Munjiza, A. and Latham, J.P. (2002) Computational and algorithmic challenge of modelling discontinua, keynote lecture. 3rd Int. Conf. On Discrete Element Methods, Santa Fe, CA.
Munjiza, A. and Latham, J.P. (2002) Challenge of modelling particulate and fracturing solids, keynote lecture. 5th World Congress on Computational Mechanics, Vienna.
Munjiza, A. and Andrews, K.R.F. (1999) A FEM/DEM model for flow through cracked solids. 7th ACME Conference on Computational Mechanics in the UK, Durham, UK.
Munjiza, A. and Andrews, K.R.F. (1998) Improved fracture solutions for the combined finite-discrete element method. 6th ACME Conference on Computational Mechanics in the UK, Exeter.
Munjiza, A. (1996) Combined finite-discrete element models for blasting and mining operations. In Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Reza Salami, M. And Banks, D. (Eds.), Berkeley, CA, 518-525.
Munjiza, A., Owen, D.R.J. and Crook, A.J.L. (1995) Energy and momentum preserving contact algorithm for general 2D and 3D contact problems. Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, 829-841.
Munjiza, A., Bicanic, N. and Owen, D.R.J. (1992) Object oriented programming concepts in discrete element analysis of fracturing media. Proceedings of the Third International Conference on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, 1949-1966.
Munjiza, A., Owen, D.R.J., Bicanic, N. and Xian, L. (1991) A concept of contact element in the discrete element method. In Proceedings NEC-91, Int. Conf. on Nonlinear Engineering Computations, Bicanic et al. (Eds.), Pineridge Press, 435-448.
Munjiza, A., Andrews, K.R.F. and White, J.R. (1997) Discretized contact solution for combined finitediscrete method. 5th ACME Conf., London, UK, 96-100.
Munjiza, A., Owen, D.R.J. and Bicanic, N. (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Int. J. Eng. Computation, 12, 145-174.
Mustoe, G.G.W. (2000) A numerical and experimental study of the performance and safety issues for ore pass system. (RP-5). WMRC (Western Mining Resources Center) annual progress.
Mustoe, G.G.W. (1989) Special elements in discrete element analysis. 1st U.S. Conference on Discrete Elements, Golden, CO.
Mustoe, G.G.W., Henriksen, M. and Huttelmaier, H.P. (Eds.) (1989) Proceedings of the 1st U.S. Conf. On Discrete Element Methods, Golden, CO.
Mustoe, G.G.W., Williams, J.R., Hocking, G. and Worgan, K. (1988) Penetration and fracturing of brittle plates under dynamic impact. INTERA Technologies, Inc.
Mustoe, G.G.W., Williams, J.R. and Hocking, G. (1987) The discrete element method in geotechnical engineering. In Developments in Soil Mechanics and Foundation Engineering-3, Banerjee, P.K. and Butterfield, R. (Eds.), New York; Elsevier, 233-263.
Mustoe, G.G.W., Williams, J.R. and Hocking, G. (1977) The discrete element method in geotechnical engineering. In Developments in Soil Mechanics and Foundation Engineering, (Ch. 7), Elsevier, Barking, U.K.
Monaco, A. D. & Rangogni, R. (1982), Boundary element method: Processing of the source term of the Poisson equation by means of boundary integrals only, in K. P. Holz, U. Meissner, W. Zielke, C. A. Brebbia, G. Pinder & W. Gray, eds, 'Finite Elements In Water Resources IV', Springer-Verlag, pp. 19.29-19.36.
Moridis, G. L. & Reddell, D. L. (1991), The Laplace transform boundary element (LTBE) method for the solution of diffusion-type problems, in 'Boundary Elements XIII', Computational Mechanics Publications and Springer-Verlag, pp. 83-97.
Meek, J.L., Computer Methods in Structural Analysis, London: E & F.N. Spon (1991).

N

Nabors, K. and White, J. (1991). FastCap: a multi-pole accelerated 3-D capacitance extraction program. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10:1447-1459.
Nabors, K., Kim, S., White, J. and Senturia, S. (1992). FastCap User's Guide. MIT, Cambridge, MA.
Nagarajan, A. and Mukherjee, S. (1993). A mapping method for numerical evaluation of two-dimensional integrals with 1/r singularity. Computational Mechanics 12:19-26.
Nagarajan, A., Lutz, E.D. and Mukherjee, S. (1994). A novel boundary element method for linear elasticity with no numerical integration for 2-D and line integralsfor 3-D problems. ASME Journal of Applied Mechanics 61:264-269.
Nagarajan, A., Mukherjee, S. and Lutz, E.D. (1996). The boundary contour method for three-dimensional linear elasticity. ASME Journal of Applied Mechanics 63:278-286.
Nayroles, B., Touzot, G. and Villon, P. (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics 10:307-318.
Nedderman, R.M. (1992) Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge.
Nemat-Nasser, S. (1990) Certain basic issues in finite-deformation continuum plasticity. Mechanica, 25, 223-229.
Nishimura, N., Yoshida, K. and Kobayashi, S. (1999). A fast multipole boundary integral equation method for crack problemsin 3D. Engineering Analysis with Boundary Elements 23:97-105.
Novati, G. and Springhetti, R. (1999). A Galerkin boundary contour method for two-dimensional linear elasticity. Computational Mechanics 23:53-62.
Nayroles, B., Touzot, G. and Villon, P. (1992), 'Generalizing the finite element method: diffuse approximation and diffuse elements', Comput. Mech. 10(5), 307-318.
Nguyen, H. and Reynen, J. (1984), 'A space-time least-squares finite element scheme for advection-diffusion equations', Comput. Methods Appl. Mech. Eng. 42(3), 331-342.
Noh, W. F. (1964), 'Cel: A time-dependent, two-space-dimensional, coupled eulerian-lagrange code', in B. Alder, S. Fernbach and M. Rotenberg, eds, Methods in computational physics. Advances in research and applications. Fundamental methods in hydrodynamics, Vol. 3, Academic Press, New York. pp. 117-179.
Nehari, Z. (1975) Conformal Mapping, Dover Publications.
Nayfeh AH, Pai PF (2004) Linear and Nonlinear Structural Mechanics. John Wiley & Sons, Chichester
Nowinski JL (1981) Applications of Functional Analysis in Engineering. Plenum Press New York London
Nowak, A. J. (1987), Solution of transient heat conduction problems using boundary-only formulation, in C. A. Brebbia, W. L. Wendland & G. Kuhn, eds, 'Boundary Elements IX Vol 3', Computational Mechanics Publications and Springer-Verlag, pp. 265-276.
Nowak, A. J. & Partridge, P. W. (1992), 'Comparison of the dual reciprocity and the multiple reciprocity methods', Engineering Analysis With Boundary Elements 10, 155-160.
Newmark, N.M., A Method of Computation for Structural Dynamics, ASCE J. Eng. Mech. Div., 85(EM3), pp. 67?94 (July 1959).

O

Obert, L. and Duvall, W.I. (1968) Rock Mechanics and the Design of Structures in Rock. John Wiley, Sons, New York.
Oden, J.T., Duarte, C.A.M. and Zienkiewicz, O.C. (1998). A new cloud based hp finite element method. Computer Methods in Applied Mechanics and Engineering 153:117-126.
Oden, J.T., Finite Elements of Nonlinear Continua, New York: McGraw-Hill (1972).
Oden JT, Reddy JN (1976) An Introduction to the Mathematical Theory of Finite Elements. John Wiley & Sons New York London Publishers Discretization Methods in Structural Mechanics II, Vienna, Kluwer Academic
Oden JT, Zohdi TI (1997) "Analysis and adaptive modeling of highly heterogeneous elastic structures", Comput. Methods Appl. Mech. Engrg. 148: 367-391
Oden JT, Prudhomme S (2001) "Goal-oriented error estimation and adaptivity for the finite element method", Computers and Mathematics with Applications 41
Oden JT, Prudhomme S (2002) "Estimation of modeling error in computational mechanics", J. Computational Physics 182: 496-515
Ogden, D. A., Non-linear elastic deformations, Ellis Horwood, 1984.
Oda, M. and Konishi, J. (1974) Microscopic deformation mechanism of granular material in simple shear. Soils and Foundations, 14(4), 25-38.
Ogawa, H. and Takeuchi, M. (1969) Dispersion of dumped sand from hopper-barges. Proceedings of the JSCE, 161, 39-49.
Ohnishi, Y., Mimuro, T., Hakevakl, N. and Yoshida, J. (1985) Verification of Input parameters for distinct element analysis of jointed rock mass. Proc. Int. Symp. on Fundamentals of Rock Joints, Bjorkllden.
Ortner, N. (1987), Construction of fundamental solutions, in C. A. Brebbia, ed., 'Topics In Boundary Elements Research', Springer-Verlag, Berlin and New York.
Ouyang, J., Yu, A.B. and Pan, R.H. (2001) Simulations of plug flow in vertical pipe by hard sphere model. 7th Int. Conf. on Bulk Materials Storage, Handling and Transportation, Newcastle Australia, 801-815.
Owen, D.R.J., Munjiza, A. and Bicanic, N. (1992) A finite element-discrete element approach to the simulation of rode blasting problems. Proceedings FEMSA-92, 11th Symposium on Finite Element methods in South Africa, Cape Town, 39-59.
Oden, J. T. and Reddy, J. N. (1976), An introduction to the mathematical theory of finite elements, Pure and Applied Mathematics, John Wiley & Sons, New York
Oleinik, O. (1957), 'Discontinuous solutions of non-linear differential equations', Usp. Mat. Nauk(N.S.) 12, 3-73 (in Russian), translated in Am. Math. Soc. Transl (Ser. 2) 26 (1963), 95-172.
Onate, E. (1998), 'Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems', Comput. Methods Appl. Mech. Eng. 151(1-2), 233-265.
Ofiate, E. and Manzan, M. (1999), 'A general procedure for deriving stabilized spacetime finite element methods for advective-diffusive problems', Int. J. Numer. Methods Fluids 31(1), 203-221.
Ozawa, S. (1975), 'Numerical studies of steady flow in a two-dimensional square cavity at high reynolds numbers', J. Phys. Soc. Jpn. 38(3), 889-895.
Olesen LH. Computational Fluid Dynamics in Microfluidic Systems. MS. Thesis, Philadelphia: Technical University of Denmark, 2003.

P


Partridge, P. W. & Brebbia, C. A. (1990), The BEM dual reciprocity method for diffusion problems, in 'Computational Methods In Water Resources VIII', Computational Mechanics Publications and Springer-Verlag, pp. 397-403.
Partridge, P. W., Brebbia, C. A. & Wrobel, L. C. (1992), The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications and Elsevier Applied Science.
Paulino, G.H. (1995). Novel Formulations of the Boundary Element Method for Fracture Mechanics and Error Estimation. Ph.D. Dissertation, Cornell University, Ithaca, NY.
Paulino, G.H., Gray, L.J. and Zarkian, V. (1996). Hypersingular residuals - a new approach for error estimation in the boundary element method. International Journal for Numerical Methods in Engineering 39:2005-2029.
Paulino, G.H., Shi, F., Mukherjee, S. and Ramesh, P. (1997). Nodal sensitivities as error estimates in computational mechanics. Acta Mechanica 121:191-213.
Paulino, G.H. and Gray, L.J. (1999). Galerkin residuals for adaptive symmetric-Galerkin boundary element methods. ASCE Journal of Engineering Mechanics 125:575-585.
Paulino, G.H., Menezes, I.F.M., Cavalcante Neto, J.B. and Martha, L.F. (1999). A methodology for adaptive finite element analysis: towards an integrated computational environment. Computational Mechanics 23:361- 388.
Paulino, G.H., Menon, G. and Mukherjee S. (2001). Error estimation using hypersingular integrals in boundary element methods for linear elasticity. Engineering Analysis with Boundary Elements 25:523-534.
Petryk, H. and Mr?oz, Z. (1986). Time derivativesof integralsand functionals defined on varying volume and surface elements. Archives of Mechanics 5-6:697-724.
Phan, A.-V., Mukherjee, S. and Mayer, J.R.R. (1997). The boundary contour method for two-dimensional linear elasticity with quadratic boundary elements. Computational Mechanics 20:310-319.
Phan, A.-V., Mukherjee, S. and Mayer, J.R.R. (1998). A boundary contour formulation for design sensitivity analysis in two-dimensional linear elasticity. International Journal of Solids and Structures 35:1981-1999.
Phan, A.-V., Mukherjee, S. and Mayer, J.R.R. (1998). The hypersingular boundary contour method for two-dimensional linear elasticity. Acta Mechanica 130:209-225.
Phan, A.-V., Mukherjee, S. and Mayer, J.R.R. (1998). Stresses, stress sensitivities and shape optimization in two-dimensional linear elasticity by the boundary contour method. International Journal for Numerical Methods in Engineering 42:1391-1407.
Phan, A.-V. and Mukherjee, S. (1999). On design sensitivity analysis in linear elasticity by the boundary contour method. Engineering Analysis with Boundary Elements 23:195-199.
Phan, A.-V. and Phan, T.-N. (1999). Structural shape optimization system using the two-dimensional boundary contour method. Archive of Applied Mechanics 69:481-489.
Phan, A.-V. and Liu, Y.J. (2001). Boundary contour analysis of thin films and layered coatings. Sixth U.S. National Congress of Applied Mechanics, Detroit, MI.
Phan, A.-V., Gray, L.J., Kaplan, T. and Phan, T.-N. (2002). The boundary contour method for two-dimensional Stokes flow and incompressible elastic materials. Computational Mechanics 28:425-433.
Pickett, G. (1944). Application of the Fourier method to the solution of certain boundary value problemsin the theory of elasticity. Transactions of the ASME (Journal of Applied Mechanics) 66:A176-A182.
Poon, H., Mukherjee, S. and Ahmad, M.F. (1998). Use of simple solutions in regularizing hypersingular boundary integral equations in elastoplasticity. ASME Journal of Applied Mechanics 65:39-45.
Polyzos, D., Dassios, G. & Beskos, D. E. (1994), 'On the equivalence of dual reciprocity and particular integral approaches in the BEM', BE Communications 5(6), 285-288.
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986). Numerical Recipes. Cambridge University Press: Cambridge.
Paillere, H. (1995), 'Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids', PhD thesis, Universit e Libre de Bruxelles and von Karman Institute, Belgium.
Park, N.-S. and Liggett, J. A. (1990), 'Taylor-least-squares finite element for twodimensional advection-dominated unsteady advection-diffusion problems', Int. J. Numer. Methods Fluids 11(1), 21-38.
Park, N. S. and Liggett, J. A. (1991), 'Application of Taylor-least squares finite element to three dimensional advection-diffusion equation', Int. J. Numer. Methods Fluids 13(6), 759-773.
Peraire, J. (1986), 'A finite element method for convection dominated flows', PhD thesis, University College of Swansea, Wales.
Peraire, J., Zienkiewicz, O. C. and Morgan, K. (1986), 'Shallow water problems: a general explicit formulation', Int. J. Numer. Methods Eng. 22(3), 547-574.
Pereira, J. M. C., Kobayashi, M. H. and Pereira, J. C. F. (2001), 'A fourth-orderaccurate finite volume compact method for the incompressible Navier-Stokes solutions', J. Comput. Phys. 167(1), 217-243.
Perot, J. B. (1993), 'An analysis of the fractional step method', J. Comput. Phys. 108(1), 51-58.
Perrochet, P. and Azerad, P. (1995), 'Space-time integrated least-squares: solving a pure advection equation with a pure diffusion operator', J. Comput. Phys. 117(2), 183-193.
Pironneau, O. (1981/82), 'On the transport-diffusion algorithm and its applications to the Navier-Stokes equations', Numer. Math. 38(3), 309-332.
Pironneau, O. (1989), Finite element methods for fluids, John Wiley & Sons, Chichester.
Pudykiewicz, J. and Staniforth, A. (1984), 'Some properties and comparative performance of semi-Lagrangian method of Robert in the solution of the advection-diffusion equation', Atmos.-Ocean 22(3), 283-308.
Purnell, D. K. (1976), 'Solution of the advective equation by upstream interpolation with a cubic spline', Mon. Weather Rev. 104, 42-48.
Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge: Cambridge University Press (1998).
Paraschivoiu M, Peraire J, Patera A (1997) "A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations", Computer Methods in Applied Mechanics and Engineering, 150: 289-312
Pauli W (2000) "Unerwartete Effekte bei nichtlinearen Berechnungen ", Software f?ur Statik und Konstruktion - 3 (Eds. Katz C, Protopsaltis B) A.A.Balkema, Rotterdam Broolfield
Peraire J, Patera AT (1998) "Bounds for linear-functional outputs of coercive partial differential equations: Local indicators and adaptive refinement"Advances in Adaptive Computational Methods in Mechanics, (Ed. Ladev`eze P, Oden JT),
Perelmuter A, Slivker V (2003) Numerical Structural Analysis. Springer-Verlag Berlin Heidelberg New York
Pflanz G (2001) Numerische Untersuchung der elastischen Wellenausbreitung infolge bewegter Lasten mittels der Randelementmethode im Zeitbereich. VDI Fortschritt-Bericht, Reihe 18, Nr. 265
Pian THH (1964) "Derivation of element stiffness matrices by assumed stress distribution", AIAA J. 2: 1332-1336
Pian THH, Wu CC (2005) Hybrid and Incompatible Finite Element Methods. Chapman & Hall/CRC
Pierce NA, Giles MB (2000) "Adjoint recovery of superconvergent functionals from pde approximations", SIAM Review, 42: 247-264
Pilkey WD, Wunderlich W (1994) Mechanics of Structures, Variational and Computational Methods. CRC Press Boca Raton, Ann Arbor London Tokyo
Piltner R, Taylor RL (1999) "A systematic construction of B-bar functions for linear and non-linear mixedenhanced finite elements for plane elasticity problems", Int. J. Numer. Methods in Eng. 44: 615-639
Pitkaeranta J, Matache AM, Schwab C (1999) Fourier mode analysis of layers in shallow shell deformations. Research Report ETH Seminar for Applied Mathematics
Pomp A (1998) The Boundary-Domain Integral Method for Elliptic Systems - With Application to Shells. Springer-Verlag Berlin Heidelberg New York
Potts D, Zdravkovic L (1999) Finite Element Analysis in Geotechnical Engineering: Volume I - Theory. Telford Publishing, London
Potts D, Zdravkovic L (1999) Finite Element Analysis in Geotechnical Engineering: Volume II - Application. Telford Publishing, London
Prathap G (1993) The Finite Element Method in Structural Engineering. Solid Mechanics and Its Applications, 24. Kluwer Academic Publ., Dordrecht

Q

Qin QH (2000) The Trefftz Finite and Boundary Element Method. WIT Press, Southampton
Quartapelle, L. (1993), Numerical solution of the incompressible Navier-Stokes equations, Vol. 113 of International Series of Numerical Mathematics, Birkhauser-Verlag, Basel.
Quartapelle, L. and Rebay, S. (1990), 'Numerical solution of two-point boundary value problems', J Comput. Phys. 86(2), 314-354.
Quarteroni, A., Saleri, F. and Veneziani, A. (2000), 'Factorization methods for the numerical approximation of Navier-Stokes equations', Comput. Methods Appl. Mech. Eng. 188(1-3), 505-526.
Quarteroni, A. and Valli, A. (1994), Numerical Approximation of Partial Differential Equations, Vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin.

R

Radin, C. (1994). The pinwheel tilingsof the plane. Annals of Mathematics 139:661-702.
Rank, E. (1989). Adaptive h-, p-, and hp- versions for boundary integral element methods. International Journal for Numerical Methods in Engineering 28:1335-1349.
Rangogni, R. (1986), 'Numerical solution of the generalized Laplace equation by coupling the boundary element method and the perturbation method', Applied Mathematical Modelling 10, 266-270.
Rangogni, R. (1991), Solution of variable coefficients PDEs by means of BEM and perturbation technique, in 'Boundary Elements XIII', Computational Mechanics Publications and Springer-Verlag.
Rizzo, F.J. (1967). An integral equation approach to boundary value problems of classical elastostatics. Quarterly of Applied Mathematics 25:83-95.
Rizzo, F. J. Shippy, D. J. (1970), A method of solution for certain problems of heat conduction, AIAA Journal 8(11), 2004-2009.
Roman, M. and Aubry, N. (2003). Design and fabrication of electrically actuated synthetic microjets. ASME Paper No. IMECE2003-41579. American Society of Mechanical Engineers, New York.
Rudolphi, T.J. (1991). The use of simple solutions in the regularization of hypersingular boundary integral equations. Mathematical and Computer Modeling 15:269-278.

Reddy, J. N. and Gartling, D. K. (2001), The finite element method in heat transfer and fluid dynamics, second edn, CRC Press, Boca Raton, FL.
Richtmyer, R. D. and Morton, K. W. (1967), Difference Methods for Initial-Value Problems, Vol. 4 of Interscience tracts in pure and applied mathematics, second edn, L. Bers, R. Courant and J.J. Stoker, eds, John Wiley & Sons, New York.
Robert, A. (1981), 'A stable numerical integration scheme for the primitive meteorological equations', Atmos.-Ocean 19(1), 35-46.
Robert, A. (1982), 'A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations', J. Meteorol. Soc. Jpn 60, 319-325.
Rodriguez-Ferran, A. and Huerta, A. (1999), 'Adapting Broyden method to handle linear constraints imposed via Lagrange multipliers', Int. J. Numer. Methods Eng. 46(12), 2011-2026.
Roe, P. L. (1981), 'Approximate Riemann solvers, parameter vectors, and difference schemes', J. Comput. Phys. 43(2), 357-372.
Roe, P. L. (1984), 'Generalized formulation of TVD Lax-Wendroff schemes', Technical Report n. 84-53, ICASE, Hampton.
Roe, P. L. (1985), 'Some contributions to the modelling of discontinuous flows', in B. Engquist, S. Osher and R. Somerville, eds, Large-scale computations in fluid mechanics, Part 2 (La Jolla, Calif., 1983), American Mathematical Society, Providence, RI, pp. 163-193.
Roe, P. L. (1986), 'Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics', J. Comput. Phys. 63(2), 458-476.
Raamachandran J (2000) Boundary and Finite Elements Theory and Problems CRC Press, Boca Raton, FL Programming Approach. Springer-Verlag Berlin Heidelberg New York Portela A, Charafi A (2002) Finite Elements Using Maple A Symbolic 588 References
Rajagopalan K (1993) Finite Element Buckling Analysis of Stiffened Cylindrical Shells. Ashgate Publishing Company, Aldershot, Hampshire
Rannacher R, Suttmeier FT (1997) "A feed-back approach to error control in finite element methods: application to linear elasticity", Computational Mechanics
Rannacher R (1998) Error Control in Finite Element Computations. Preprint 1998-54, Inst. Angew. Math. University Heidelberg
Rao SS (1999) The Finite Element Method in Engineering. Pergamon Press, Oxford (4th ed.)
Reddy BD (1998) Introductory Functional Analysis. With Applications to Boundary Value Problems and Finite Elements. Springer-Verlag Berlin Heidelberg New York
Reddy JN (1991) Applied Functional Analysis and Variational Methods in Engineering. Krieger Publishing Company Malabar
Roache PJ (1998) Verification and validation in Computational Science and Engineering. Hermosa Publisher, Albuquerque
Ross CTF (1990) Finite Element Methods in Engineering Science. Horwood Publishing Ltd, Chichester, UK
Ross CTF (1996) Finite Element Programs in Structural Engineering and Continuum Mechanics. Albion Publishing, Chichester
Ross CTF (1998) Advanced Applied Finite Element Methods. Horwood Publishing Ltd, Chichester
Runesson K (2002) "Goal-oriented finite element error control and adaptivity with emphasis on nonlinear material behavior and fracture", 15th Nordic Seminar on Computational Mechanics NSCM 15 (Eds. Lund E, Olhoff N, Stegmann J)
Rao, S.S. (1982) The Finite Element in Engineering, Pergamon Press, Oxford, England.
Rebay, S. (1993) Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm. J. Comput. Phys.
Roberts, G.O. (1971) Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, Springer, Berlin, Heidelberg.
Ryskin, G. and Leal, L.G. (1983) Orthogonal Mapping. J. Comput. Physics 50, 71-100.

S

Saigal S. and Kane, J.H. (1990). Boundary-element shape optimization system for aircraft structural components. AIAA Journal 28:1203-1204.
Sandgren, E. andWu, S.J. (1988). Shape optimization using the boundary element method with substructuring. International Journal for Numerical Methods in Engineering 26:1913-1924.
Schittkowski, K. (1986). NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems. Annals of Operations Research 5:485-500.
Segerlind, L.J., Applied Finite Element Analysis, New York: John Wiley (1987).
Senturia, S.D., Harris, R.M., Johnson, B.P., Kim, S., Nabors, K., Shulman, M.A. and White, J.K. (1992). A computer-aided design system for microelectromechanical systems (MEMCAD). Journal of Microelectromechanical Systems 1:3-13.
Shi, F., Ramesh, P. and Mukherjee, S. (1995). Simulation methods for micro-electro-mechanical structures (MEMS) with application to a microtweezer. Computers and Structures 56:769-783.
Shi, F., Ramesh, P. and Mukherjee, S. (1996). Dynamic analysis of microelectro-mechanical systems. International Journal for Numerical Methods in Engineering 39:4119-4139.
Shi, X. and Mukherjee, S. (1999). Shape optimization in threedimensional linear elasticity by the boundary contour method. Engineering Analysis with Boundary Elements 23:627-637.
Sladek, J. and Sladek, V. (1986). Computation of stresses by BEM in 2-D elastostatics. Acta Technica CSAV 31:523-531.
Sladek, J., Sladek, V. and Atluri, S.N. (2000). Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneousmaterial properties. Computational Mechanics 24:456-462.
Sloan, I.H. (1976). Improvement by iteration for compact operator equations. Mathematics of Computation 30:758-764.
Sloan, I.H. (1990). Superconvergence. Numerical Solution of Integral Equations Chapter 2. M. A. Goldberg ed., 35-70 Plenum Press, New York.
Sloan, I.H. (1992). Error analysis in boundary integral methods. Acta Numerica Chapter 7. A. Iserles ed., 287-339 Cambridge University Press, UK.
Smith, I.M. and Griffiths, D.V., Programming the Finite Element Method, 3rd Edition, Chichester: John Wiley (1998).
Stein, E., Error Controlled Adaptive Finite Elements in Solid Mechanics, Chichester: John Wiley (2003).
Stephan, E.P. (1996). The h-p boundary element method for solving 2-and 3- dimensional problems. Computer Methods in Applied Mechanics and Engineering 133:183-208.
Strouboulis, T., Babu?ska, I. and Copps, K. (2000). The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering 181:43-69.
Sukumar, N., Moran, B. and Belytschko, T. (1998). The natural element method. International Journal for Numerical Methods in Engineering 43:839-887.
Sukumar, N., M?oes, N., Moran, B. and Belytschko, T. (2000). Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering 48:1549-1570.
Sukumar, N., Moran, B., Semenov, A.Y. and Belytschko, T. (2001). Natural neighbour Galerkin methods. International Journal for Numerical Methods in Engineering 50:1-27.
Szabo, B. and Babuska, I., Finite Element Analysis, New York: John Wiley (1991).
Sachdev, P. L. (1987), Nonlinear diffusive waves, Cambridge University Press, Cambridge.
Sloan, S.W. (1987) A fast algorithm for constructing Delaunay triangulations in the plane. Adv. Eng. Software 9, 1.
Spain, B. (1953) Tensor Calculus, Oliver and Boyd, Edinburgh and London.
Steger, J.L. and Chaussee, D.S. (1980) Generation of body fitted co-ordinates using hyperbolic differential equations. SIAM J. Sci. Stat. Comput. 1(4), 431-437.
Stoker, J.J. (1968) Differential Geometry, Wiley-Interscience.
Struik, D.J. (1950) Lectures on Classical Differential Geometry, Dover Publications.
Sampaio, P. A. B. D. and Moreira, M. L. (2000), 'A new finite element formulation for both compressible and nearly incompressible fluid dynamics', Int. J. Numer. Methods Fluids 32(1), 51-78.
Seimin, V. (1987), 'Third-order finite element schemes for the solution of hyperbolic problems', Technical Report 707, INRIA, France.
Seimin, V, Donea, J. and Quartapelle, L. (1985), 'Finite element methods for nonlinear advection', Comput. Methods Appl. Mech. Eng. 52(1-3), 817-845.
Shakib, F. (1989), 'Finite element analysis of the compressible Euler and Navier-Stokes equations', PhD thesis, Stanford University, USA.
Shakib, F. and Hughes, T. J. R. (1991), 'A new finite element formulation for computational fluid dynamics. IX. Fourier analysis of space-time Galerkin/least-squares algorithms', Comput. Methods Appl. Mech. Eng. 87(1), 35-58.
Shakib, F, Hughes, T. J. R. and Johan, Z. (1991), 'A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier-Stokes equations', Comput. Methods Appl Mech. Eng. 89(1-3), 141-219.
Sod, G. A. (1978), 'A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws',7. Comput. Phys. 27(1), 1-31.
Soulai'mani, A. and Fortin, M. (1994), 'Finite element solution of compressible viscous flows using conservative variables', Comput. Methods Appl. Mech. Eng. 118(3-4), 319-350.
Staniforth, A. and Cote, J. (1991), 'Semi-Lagrangian integration schemes for atmospheric models - A review', Mon. Weather Rev. 119(9), 2206-2223.
Staniforth, A. and Pudykiewicz, J. (1985), 'Reply to comments on and addenda to "Some properties and comparative performance of semi-Lagrangian method of Robert in the solution of the advection-diffusion equation'", Atmos.-Ocean 23, 195-200.
Steger, J. L. and Warming, R. F. (1981), 'Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods', J. Comput. Phys. 40(2), 263-293.
Stein, L. R., Gentry, R. A. and Hirt, C. (1977), 'Computational simulation of transient blast loading on three-dimensional structures', Comput. Methods Appl. Mech. Eng. 11, 57-74.
Strang, G. and Fix, G. J. (1973), An analysis of the finite element method, Prentice Hall Series in Automatic Computation, Prentice Hall, Englewood Cliffs, NJ.
Strouboulis, T., Copps, K. and BabuSka, I. (2000), 'The generalized finite element method: an example of its implementation and illustration of its performance'
Schwalbe JW (1989) Finite Element Analysis of Plane Frames and Trusses. Krieger Publishing, Melbourne, FL
Schwarz HR (1988) Finite Element Methods, Computational Mathematics and Applications Series. Academic Press, London
Schenk C, Schu?eller G (2005) Uncertainty Assessment of Large Finite Element Systems. Lecture Notes in Applied and Computational Mechanics, 24. Springer-Verlag Berlin Heidelberg New York
Simo JC, Rifai MS (1990) "A class of mixed assumed strain methods and the method of incompatible modes", Int. J. Num. Methods in Eng. 29
Simo JC, Armero F (1992) "Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes", Int. J. Num. Methods in Eng.
Simo JC, Armero F, Taylor RL (1993) "Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems", Computer Methods in Appl. Mech. Eng. 110: 359-386
Sladek V, Sladek J (1998) Singular Integrals in Boundary Element Methods (Advances in Boundary Elements Vol. 3). Computational Mechanics Publication Southampton
Snieder R (2004) A guided Tour of Mathematical Methods for the Physical Sciences. Cambridge University Press, Cambridge
Spyrakos CC, Raftoyiannis J (1997) Linear and Nonlinear Finite Element Analysis in Engineering Practice. Algor Inc., Pittsburgh, PA
Stark RF, Booker JR (1997) "Surface displacements of a non-homogeneous elastic half-space subjected to uniform surface tractions. Part I: loading on arbitrarily shaped areas", Int. J. Num. Analytical Meth. Geomechanics, 21: 361-378
Stark RF, Booker JR (1997) "Surface displacements of a non-homogeneous elastic half-space subjected to uniform surface tractions. Part II: loading on rectangular shaped areas", Int. J. Num. Analytical Meth. Geomechanics, 21: 379-395
Steele JM (1989) Applied Finite Element Modeling - Practical Problem Solving for Engineers. Marcel Dekker Inc., New York
Stein E, Ohnimus S (1999) "Anisotropic discretization and model-error estimation in solid mechanics by local Neumann problems", Computer Methods in Appl. Mech. Eng. 176: 363-385
Stein E,WendlandWEds. (1988) Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View. Springer-Verlag Berlin Heidelberg New York
Stein E, de Borst R, Hughes TJR Eds. (2004) Encyclopedia of Computational Mechanics, Vol. 1 Fundamentals, Vol. 2 Solids and Structures, Vol. 3 Fluids. Wiley, Chichester
Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice Hall, Englewood Cliffs, N.J.
Strang G (1991) Calculus. Wellesley-Cambridge Press, Wellesley
Strang G (1986) Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley
Strang G (2003) Linear Algebra and Its Applications. Saunders (3rd ed.)
Stummel F (1979) "The generalized patch test", SIAM Journal for Numerical Analysis, 16, 3: 449-471
Stricklin JA et al (1969) "A rapidly converging triangular plate element", AIAA J. 7: 180-181
Sudarshan R, Amaratunga K, Gr?atsch T (2006) "A combined approach for New York Mechanics. John Wiley & Sons, New York

T

Tafreshi, A. and Fenner, R.T. (1995). General-purpose computer program for shape optimization of engineering structures using the boundary element method. Computers and Structures 56:713-720.
Tanaka, M., Sladek, V. and Sladek, J. (1994). Regularization techniques applied to boundary element methods. ASME Applied Mechanics Reviews 47:457-499.
Telukunta, S. and Mukherjee, S. (2004). An extended boundary node method for modeling normal derivative discontinuities in potential theory acrosscornersand edges. Engineering Analysis with Boundary Elements 28:1099-1110.
Telukunta, S. and Mukherjee, S. (2004). Extended boundary node method for three-dimensional problems in potential theory. Computers and Structures. Submitted.
Telles, J.C.F. (1987). A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. International Journal for Numerical Methods in Engineering 24:959-973.
Telles, J.C.F. and Oliveria, R.F. (1994). Third degree polynomial transformation for boundary element integrals: Further improvements. Engineering Analysis with Boundary Elements 13:135-141.
Timoshenko, S.P. and Goodier, J.N. (1970). Theory of Elasticity 3rd. ed. McGraw Hill, New York.
Toh, K.-C. and Mukherjee, S. (1994). Hypersingular and finite part integralsin the boundary element method. International Journal of Solids and Structures 31:2299-2312.
Tanguay, M., Simard, A. and Staniforth, A. (1989), 'A three-dimensional semi-Lagrangian integration scheme for the Canadian regional finite-element forecast model', Mon. Weather Rev. 117, 1861-1871.
Taylor, C. and Hood, P. (1973), 'A numerical solution of the Navier-Stokes equations using the finite element technique', Comput. Fluids 1(1), 73-100.
Temam, R. (1969), 'Sur1' approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires. II', Arch. Ration. Mech. Anal. 33, 377-385.
Temam, R. (1991), 'Remark on the pressure boundary condition for the projection method', Theor. Comput. Fluid Dyn. 3(3), 181-184.
Temam, R. (2001), Navier-Stokes equations. Theory and numerical analysis, AMS Chelsea Publishing, Providence, RI. Corrected reprint of the 1984 edition [North-Holland, Amsterdam, 1984].
Tezduyar, T. E. (1992), 'Stabilized finite element formulations for incompressible flow computations', Adv. Appl. Mech. 28, 1-44.
Tezduyar, T. E. and Ganjoo, D. K. (1986), 'Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection-diffusion problems', Comput. Methods Appl. Mech. Eng. 59(1), 49-71.
Tezduyar, T. E., Mittal, S., Ray, S. E. and Shih, R. (1992), 'Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocitypressure elements', Comput. Methods Appl. Mech. Eng. 95(2), 221-242.
Tezduyar, T. E., Mittal, S. and Shih, R. (1991), 'Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements', Comput. Methods Appl. Mech. Eng. 87(2-3), 363-384.
Tezduyar, T. E. and Osawa, Y. (2000), 'Finite element stabilization parameters computed from element matrices and vectors', Comput. Methods Appl. Mech. Eng.
Tezduyar, T. E. and Park, Y. (1986), 'Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations', Comput. Methods AppL Mech. Eng. 59(3), 307-325.
Trulio, J. G. (1966), 'Theory and structure of the AFTON codes', Technical Report AFWL-TR-66-19, Air Force Weapons Lab.
Tuann, S. Y. and Olson, M. D. (1978), 'Review of computing methods for recirculating flows', J. Comput. Phys. 29(1), 1-19.
Tanaka,M., Matsimoto, T.& Yang, Q. F. (1994), 'Time-stepping boundary elementmethod applied to 2-D transient heat conduction problems', Applied Mathematical Modelling 18, 569-576.
Takagi, Y., Mizutani, H. and Kawakami, S. (1984) Impact fragmentation experiments of basalts and pyrophyllites.
Tarumi, Y. and Hakuno, M. (1989) A DEM simulation for sand liquefaction. Proc. 1st U.S. Conf. On Discrete Element Methods, Golden, CO.
Taylor L.M. and Preece D.S. (1989) Simulation of blasting induced rock motion using spherical element models. Proceedings of the 1st U.S. Conf. on Discrete Element Methods, Golden, CO.
Taylor, L.M. and Preece, D.S. (1992) Simuladon of blasting induced rock motion using spherical element models, Eng. Computations, 9(2).
Terzaghi, K. (1936) Stress distribution in dry and in saturated sand above a yielding trap-door. Proceedings First International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, 307-311.
Thomas, P.A. and Bray, J.D. (1999) Capturing nonspherical shape of granular media with disk clusters, ASCE J. Geotech. Geoenvironmental Eng.
Thornton, C. and Barnes, D.J. (1982) On the mechanics of granular materials. IUTAM Conf. on Deformation and Failure of Granular Materials.
Thornton, C. and Barnes, D.J. (1986) Computer simulated deformation of compact granular assemblies. Acta Mechanica.
Thornton, C. (1989) Applications of DEM to process engineering problems. Proceedings 1st U.S. Conference on Discrete Element Methods, Golden, CO.
Thornton, C. (Ed.) (2000) Numerical simulations of discrete particle systems. Powder Technology, Special Issue.
Thornton, C. and Randall, C.W. (1988) Applications of theoretical contact mechanics to solid particle system simulation. In Micromechanics of Granular Materials, Satake, M. and Jenkins, J.T. (Eds.), Elsevier
Thornton, C. and Yin, K.K. (1991) Impact of elastic spheres with and without adhesion. Powder Technology.
Thornton, C. (1991) Interparticle sliding in the presence of adhesion. J. Phys. D: Appl. Phys.
Thornton, C. and Antony, S.J. (2000) Quasi-static shear deformation of a soft particle B; system. Powder Tech.
Throop, G.J. and Bearman, R.J. (1965) Numerical solutions of the Percus-Yevick equation for the hardsphere potential. J. Chem. Phys.
Tillemann, H.J. and Herrmann, H.J. (1995) Simulating deformations of granular solids under shear. Physica A, 217.
Ting, J.M. and Corkum, B.T. (1988) Strength behavior of granular materials using discrete numerical modeling. Proc. 6th Int. Conf. Numerical Models in Geomechanics, Innsbruck, Austria.
Ting, J.M. (1992) A robust algorithm for ellipse-based discrete element modelling of granular materials. Comput. and Geotech.
Toffoli, T. and Margolus, N. (1987) Cellular Automata Machines: A New Environment for Modeling. MIT Press, USA.
Tsuji, Y., Kawaguchi, T. and Tanaka, T. (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technology.
Tuzun, U., Houlsby, G.T., Nedderman, R.M. and Savage, S.B. (1982) The flow of granular materials II: Velocity distributions in slow flow. Chem. Eng. Sci.
Tabtabai SMR (1997) Finite Element-Based Elasto-Plastic Optimum Reinforcement Dimensioning of Spatial Concrete Panel. Springer-Verlag Berlin Heidelberg New York
Taylor RL, Simo JC (1985) "Bending and membrane elements for analysis of thick and thin shells", Proceedings of the NUMETA '85 Conference: 587-591 (Eds. Middleton J, Pande GN) Swansea, Balkema A.A. Rotterdam
Taylor RL, Beresford PJ, Wilson EL (1976) "A non-conforming element for stress analysis", Int. J. Num. Methods in Eng. 10: 1211-1219
Teller E, Teller W, Talley W (1991) Conversations on the dark secrets of physics. Plenum Press New York London
Tenek LT, Argyris J (1998) Finite Element Analysis for Composite Structures. Kluwer Academic Publ., Dordrecht
Topping BHV, Muylle J, Putanowicz R, Cheng B (2000) Finite Element Mesh Generation. Saxe-Coburg Publ., Edinburgh
Tottenham H (1970) "Basic Principles", in: Finite Element Techniques in Structural Mechanics. (Eds. Tottenham H, Brebbia C), Southampton University Press, Southampton 1970
Trompette P (1992) Structural Mechanics by FEM: Statics and Dynamics. Masson, Paris
Taylor, C. and Hughes, T.G. (1981) Finite Element Programming of the Navier-Stokes Equations, Pineridge Press.
Thompson, J.F., Soni, B.K. and Weatherill, N.P. (eds.) (1999) Handbook of Grid Generation, CRC Press.
Thompson, J.F., Thames, F.C. and Mastin, C.W. (1974) Automatic numerical generation of body-fitted curvilinear co-ordinate system for field containing any number of arbitrary twodimensional bodies. J. Computat. Phys., 15, 299-319.
Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (1985) Numerical Grid Generation: Foundations and Applications, North Holland.

U

Uchida, Y. and Hakuno, M. (1989) A DEM simulation of debris flow. Proc. 1st U.S. Conf. on Discrete Element Methods, Golden, CO.
Ulrich, K., State of the Art in Numerical Methods for Continuation and Bifurcation Problems with Applications in Continuum Mechanics- a Survey and Comparative Study, Report No. 03 1/88, Laboratorio, Nacional de Computacao Cientifica, Rio de Janerio, Brazil (1988).
Underwood, P. G. & Park, K. C., A variable central difference method for structural dynamic analysis -- Part 2, Implementation and performance evaluation, Comp.Meth. in Appl. Mech. & Enyny., 23,259 -279 (1980).

V

Van Nierop, M.A., Glover, G., Hinde, A.L. and Moys, M.H. (2001) A discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill. Int. J. Miner.
Van der Waerden, B. L. (1970), Algebra. Vol. 1, Frederick Ungar, New York.
Van Leer, B. (1974), 'Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme', J. Comput. Phys.
Van Leer, B. (1982), 'Flux-vector splitting for the Euler equations', in E. Krause, ed., Eigth International Conference on Numerical Methods in Fluid Dynamics, Vol. 170 of Lecture Notes in Phys., Springer-Verlag, Berlin.
Von Neumann, J. and Richtmyer, R. D. (1950), 'A method for the numerical calculation of hydrodynamic shocks', J. Appl. Phys. 21,
Volakis JL, Chatterjee A, Kempel LC. Finite Element Method for Electromagnetics. New York: IEEE Press, 1998.
Vemaganti K (2004) "Modelling error estimation and adaptive modelling of perforated materials", Int. J. Num. Methods in Eng. 59: 1587-1604

W

Walker, D.M. (1966) An approximate theory for pressures and arching in hoppers. Chem. Eng. Sci. 21
Walton, O.R. and Braun, R.L. (1988) Viscosity and temperature calculations for assemblies of inelastic frictional disks. J. Rheology, 30(5), 949-980.
Walton, O.R., Braun, R.L., Mallon, R.G. and Cervelli, D.M. (1988) Particle-dynamics calculations of gravity flows of inelastic, frictional spheres. In Micromechanics of granular material, Satake, M. And Jenkins, J.T. (Eds.), Elsevier, Amsterdam, 153-161.
Walton. O.R. and Braun, R.L. (1986) Viscosity, granular-temperature and stress calculations for shearing assemblies of Inelastic, frictional disks. J. Rheology, 30, 949-980.
Wang, C.Y., Wang, C.F. and Sheng, J.A. (1999) Packing generation scheme for the granular assemblies with 3D ellipsoidal particles. Int. J. Numer. Anal. Meth. Geomech. 23
Warburton, P.M. (1981) Vector stability analysis of an arbitrary polyhedral rock block with any number of free faces. Int. J. Rock Mech. 18, 415-427.
Watanabe, H. (1999) Critical rotation speed for ball-milling. Powder Technology, 104, 95-99.
Weaver, J.M. (1975) Geological factors significant in the assessment of rippability. The Civil Eng. in Sth. Africa, 17(12), 313-316.
Wei, Q., Cheng, X.H. and Liu, G.T. (1991) The elliptic discrete element method as a new approach to simulating granular media. Proc. Asian Pacific Conf. Computational Mechanics, Hong Kong.
Wen, C. and Yu, Y. (1966) Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser., 62(62), 100.
Wei, X., Chandra, A., Leu, L.J. and Mukherjee, S. (1994). Shape optimization in elasticity and elasto-viscoplasticity by the boundary element method. International Journal of Solids and Structures 31:533-550.
Weaver, W.F., Jr. and Johnston, P.R., Finite Elements for Structural Analysis, Englewood Cliffs: Prentice Hall (1984).
Wendland, W.L., Stephan, E.P. and Hsiao, G.C. (1979). On the integral equation method for the plane mixed boundary value problem for the Laplacian. Mathematical Methods in the Applied Sciences 1:265-321.
Wendland, W.L. and Yu, D-H. (1988). Adaptive boundary element methods for strongly elliptic integral equations. Numerische Mathematik 53:539-558.
Wendland, W.L. and Yu, D-H. (1992). A posteriori local error estimates of boundary element methods with some pseudo-differential equations on closed curves. Journal of Computational Mathematics 10:273-289.
Wiberg, N.-E. and Li, X.D., "A Postprocessed Error Estimate and an Adaptive Procedure for the Semidiscrete Finite Element Method in Dynamic Analysis," Int. J. Num. Meth. Eng, 37, pp. 3585?3603 (1994).
Wiberg, N.-E., "Superconvergent Patch Recovery ? A Key to Quality Assessed FE Solutions," Adv. Eng. Software, 28, pp. 85?95 (1997).
Wilde, A.J. and Aliabadi, M.H. (1998). Direct evaluation of boundary stresses in the 3D BEM of elastostatics. Communications in Numerical Methods in Engineering 14:505-517.
William, K.J., Bicanic, N., Pramono, N. and Sture, S. (1985) Composite fracture mode for strain softening computations of concrete. Int. Conf. Fracture Mechanics of Concrete, Lausanne, Switzerland.
Williams, J.R. and Mustoe, G. (1987) Nodal methods for the analysis of discrete systems. Int. J. Comput. and Geotech. 4, 1-19.
Williams, J.R. and Pentland, A.P. (1989) Superquadrics and modal dynamics for discrete elements in concurrent design. In Proceedings of the 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M. and Huttelmaier, H.P. (Eds.), Golden, CO.
Williams, J.R. and O'Connor, R. (1995) A linear complexity intersection algorithm for discrete element simulations of arbitrary geometrics. Int. J. CAE-Eng. Computations, 12(2), 185-201.
Williams, J.R., O'Coimor, R. and Rege, N. (1996) Discrete element analysis and granular vortex formation. Electronic J. Geotech. Eng. Available at.
Williams, J. and Mustoe, G. (Eds.) (1993) Proceedings of the 2nd International Conference on Discrete Element Methods (DEM), IESL Publications.
Williams, J.R. and Mustoe, G.G.W. (1987) Modal methods for the analysis of discrete systems. Comput. and Geotech. 4, 1-19.
Williams, J.R. and Pentland, A. (1991) Superquadrics and modal dynamics for discrete elements in concurrent design. Technical Report Order No. lESL91-12, Intelligent Engineering Systems Laboratory, Massachusetts Institute of Technology.
Williams, J.R. and Pentland, A.P. (1989) Good vibrations: modal dynamics for graphics and animation. ACM Comput. Graphics, 23(3).
Williams, J.R. (1987) Contact analysis of large numbers of interacting bodies using discrete modal methods for simulating material failure on the microscopic scale. Technical Report Order No. lESL91-12, Intelligent Engineering Systems Laboratory, Massachusetts Institute of Technology, 1991.
Williams, J.R. (1988) Contact analysis of large numbers of interacting bodies using discrete modal methods for simulating material failure on the microscopic scale. Eng. Comput. 5, 198-209.
Williams, J.R. and Mustoe, G.G.W. (1987) Modal methods for the analysis of discrete systems. Comput. and Geotech. 4, 1-19.
Williams, J.R., Hocking, G. and Mustoe, G.G.W. (1985) The theoretical basis of the discrete element method. Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications, Swansea, 897-906.
Williams, J.R. and Pentland, A.P. (1989) Interactive, integrated design - object representation and modal analysis. Human Computer Interface International '89, Boston, MA.
Wilson, E.L, Farhoomand, I. and Bathe, K.J. (1973) Nonlinear dynamic analysis of complex structures. Earthquake Eng. Struct. Dyn. 1, 241-252.
Wittke, W. and Leonards, G.A. (1987) Modified hypothesis for failure of Malpasset Dam. Eng. Geology, 24, 567-594.
Woolfson, M. M. (1997). An Introduction to X-ray Crystallography. Cambridge University Press: Cambridge.
Worgan, K.J and Mustoe, G.G.W. (1989) Application of the discrete element method to modeling the subsurface penetration of a uniform cover. Proc. 1st Conf. DEM, Golden, CO.
Wriggers and Simo, J.C. (1985) A note on tangent stiffness for fully nonlinear contact problems. Commun. Appl. Numer. Meth. 1, 199-203.
Wright, T.W. (1987) Steady shearing in a viscoplastic solid. J. Mech. Phys. of Solids, 35, 269-282.
Wylen, G.J.V. and Sonntao, R.E. (1985) Fundamentals of Classical Thermodynamics. 3rd edition, John Wiley & Sons, New York.
Wait, R. and Mitchell, A. R. (1985), Finite element analysis and applications, John Wiley & Sons, New York.
Warming, R. F. and Hyett, B. J. (1974), 'The modified equation approach to the stability and accuracy analysis of finite-difference method', J. Comput. Phys. 14, 159-179.
Wilkins, M. L. (1969), 'Calculation of elastic-plastic flow', Technical Report UCRL-7322 Rev 1, University of California.
Wong, J. S., Darmofal, D. L. and Peraire, J. (2001), 'The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm', Comput. Methods Appl. Mech. Eng. 190(43-44), 5719-5737.
Woodward, P. and Colella, P. (1984), The numerical simulation of two-dimensional fluid flow with strong shocks', J. Comput. Phys. 54(1), 115-173.
Wrobel, L. C., Brebbia, C. A. & Nardini, D. (1986), The dual reciprocity boundary element formulation for transient heat conduction, in 'Finite Elements In Water Resources VI', Computational Mechanics Publications and Springer-Verlag.
Wu, J. C. (1985), Boundary element methods and inhomogeneous parabolic equations, in C. A. Brebbia & B. J. Noye, eds, 'BETECH 85', Springer-Verlag, pp. 19-30.

X

Xu, Y. and Saigal, S. (1998). An element-free Galerkin formulation for stable crack growth in elastic solids. Computer Methods in Applied Mechanics and Engineering 154:331-343.
Xu, Y. and Saigal, S. (1998). Element-free Galerkin study of steady quasistatic crack growth in plane strain tension in elastic-plastic materials. Computational Mechanics 21:276-282.
Xu, Y. and Saigal, S. (1999). An element-free Galerkin analysis of steady dynamic growth of a mode I crack in elastic-plastic materials. International Journal of Solids and Structures 36:1045-1079.
Xu, B.H., Yu, A.B., Chew, S.J. and Zulli, P. (2000) Numerical simulation of the gas-solid flow in a bed with lateral gas blasting. Powder Technol. 109, 13-26.

Y

Yamazaki, K., Sakamoto, J. and Kitano, M. (1994). Three-dimensional shape optimization using the boundary element method. AIAA Journal 32:1295-1301.
Yan F. Numerical Simulations of High Knudsen Number Gas Flows and Microchannel Electrokinetic Liquid Flows. Ph.D. Thesis. Drexel University, 2003.
Yang, R.J. (1990). Component shape optimization using BEM. Computers and Structures 37:561-568.
Yang, T.Y. (1986). Finite Element Structural Analysis. Prentice Hall, Englewood Cliffs, NJ.
Yoshida, K., Nishimura, N. and Kobayashi, S. (2001). Application of a new fast multipole boundary integral equation method to crack problems in 3D. Engineering Analysis with Boundary Elements 25:239-247.
Yu, D.-H. (1987). A posteriori error estimates and adaptive approaches for some boundary element methods. Mathematical and Computational Aspects Vol. 1 of Boundary Elements IX. C. Brebbia, W. L.Wendland and G.
Yu, D.-H. (1988). Self adaptive boundary element methods. Zeitschrift f?ur Angewandte Mathematik und Mechanik 68:T435-T437.
Yee, H. C. (1987), 'Construction of explicit and implicit symmetric TVD schemes and their applications', J Comput. Phys. 68(1), 151-179.
Yosida, K. (1995), Functional analysis, Springer-Verlag, Berlin. Reprint of the sixth (1980) edition.
Yanenko, N. N. (1971), The method of fractional steps. The solution of problems of mathematical physics in several variables, Springer-Verlag, Berlin. Translated from the Russian by T. Cheron. English translation edited by M. Holt.
Yamamoto, T. and Hakuno, M. (1989) A DEM simulation for tunnel excavation. Proc. 1st U.S. Conf. On Discrete Element Methods, Golden, CO.
Yang, R.Y., Zou, R.P. and Yu, A.B. (2001) Microdynamic analysis of the flow of particles in horizontal rotating drum. 7th International Symposium on Agglomeration, Aibi, France, 569-588.

Z

Zhang, Q. and Mukherjee, S. (1991). Design sensitivity coefficients for linear elastic bodieswith zonesand cornersb y the derivative boundary element method. International Journal of Solids and Structures 27:983-998.
Zhang, Y. (1993), On the dual reciprocity boundary element method, Master's thesis, The University of Wollongong.
Zheng, R., Coleman, C. J. & Phan-Thien, N. (1991), 'A boundary element approach for nonhomogeneous potential problems', Computational Mechanics 7, 279-288.
Zhao, Z. (1991). Shape Design Sensitivity Analysis and Optimization Using the Boundary Element Method. Springer, New York.
Zhao, Z.Y. and Lan, S.R. (1999). Boundary stress calculation - a comparison study. Computers and Structures 71:77-85.
Zhou, S.J., Sun, S.X. and Cao, Z.Y. (1998). The dual boundary contour method for two-dimensional crack problems. International Journal of Fracture 92:201-212.
Zhou, S.J., Cao, Z.Y. and Sun, S.X. (1999). The traction boundary contour method for linear elasticity. International Journal for Numerical Methods in Engineering 46:1883-1895.
Zhu T., Zhang, J-D. and Atluri, S.N. (1998). A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics 21:223-235.
Zhu, T. (1999). A new meshless regular local boundary integral equation (MRLBIE) method. International Journal for Numerical Methods in Engineering 46:1237-1252.
Zhu, S. (1993), 'Particular solutions associated with the Helmholtz operator used in DRBEM', BE Abstracts 4(6), 231-233.
Zhu, S., Satravaha, P. & Lu, X. (1994), 'Solving linear diffusion equations with the dual reciprocity method in Laplace space', Engineering Analysis With Boundary Elements 13, 1-10.
Zhang, D.Z. and Rauenzahn, R.M. (1997) A viscoelastic model for dense granular flows. J. Rheol.
Zhang, D.Z. and Rauenzahn, R.M. (2000) Stress relaxation in dense and slow granular flows. J. Rheol.
Zhang, Y. and Cundall, P.A. (1986) Numerical simulation of slow deformations. Proc. Symp. on the Mechanics of Particulate Media, Tenth U.S. National Congress of Applied Mechanics, Austin, TX.
Zhang, Z.P., Yu, A.B. and Oakeshott, R.B.S. (1996) Effect of packing method on the randomness of disk packing. J. Phys. A: Mathematical & General, 29, 2671-2685.
Zhang, Z.P., Liu, L.F., Yuan, Y.D. and Yu, A.B. (2001) Numerical study of the effects of dynamic factors on the packing of particles. Powder Technol. 116, 23-32.
Zhong, Z.H. and Nilsson, L. (1990) A contact searching algorithm for general 3D contact-impact problems. Comp. Struct. 34, 327-335.
Zhou, Y.C., Xu, B.H., Yu, A.B. and Zulli, P. (2002) An experimental and numerical study of the angle of repose of coarse spheres, Powder Technol. 125(1), 45-54.
Zhou, Y.C., Xu, B.H., Yu, A.B. and Zulli, P. (2001) Numerical study of sandpile formation and force evolution. Powders and Grains, Sendai, Japan, 495-498.
Zhou, Y.C., Xu, B.H., Yu, A.B. and Zulli, P. (2002) A numerical and experimental study of the angle of repose of granular particles. Powder Technol. 125, 45-54.
Zhou, Y.C., Wright, W.D., Yang, R.Y., Xu, B.H. and Yu, A.B. (1999) Rolling friction in the dynamic simulation of sandpile formation. Physica A, 269, 536-553.
Zhu, H.P. and Yu, A.B. (2001) Weighting ftinction in the averaging theory of granular materials. Bulk Solids Handling, 21, 53-57.
Zhu, H.P. and Yu, A.B. (2001) Stress distribution of hopper flow. 7th Int. Conf. on Bulk Materials Storage, Handling and Transportation, Newcastle, Australia, 283-290.
Zienkiewicz, O.C. and Taylor, R.L. (1994). The Finite Element Method. Vols. 1 and 2. McGraw Hill, Maidenhead, Berkshire, UK.
Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th Edition, London: Butterworth-Heinemann (2000).
Zienkiewicz, O. C. and Codina, R. (1995), A general algorithm for compressible and incompressible flow. I. The split, characteristic-based scheme, Int. J. Numer. Methods Fluids 20(8-9), 869-885.
Zienkiewicz, O. C. and Godbole, P. N. (1975), Viscous, incompressible flow with special reference to non-Newtonian (plastic) fluids, in R. H. Gallagher, J. T. Oden, C. Taylor and O. C. Zienkiewicz, eds, Finite elements in fluids, Vol. 1: Viscous Flow and Hydrodynamics, International Symposium on the Finite Element Method in How Problems held at Swansea, Wales, John Wiley & Sons, Chichester, pp. 25-55.
Zienkiewicz, O. C. and Morgan, K. (1983), Finite elements and approximation, John Wiley & Sons, New York.
Zienkiewicz, O. C., Morgan, K., Satya Sai, B. V. K., Codina, R. and Vazquez, M. (1995), 'A general algorithm for compressible and incompressible flow. II. Tests on the explicit form', Int. J. Numer. Methods Fluids 20(8-9), 887-913.
Zienkiewicz, O. C. and Taylor, R. L. (2000a), The finite element method. Vol. I The basis, fifth edn, Butterworth Heinemann, Oxford.
Zienkiewicz, O. C. and Taylor, R. L. (2000b), The finite element method. Vol. 3 Fluid dynamics, fifth edn, Butterworth Heinemann, Oxford.
Zienkiewicz, O.C. and Taylor, R.L. (1989) The Finite Element Method; Basic Formulation and Linear Problems. 1, 4th edition. McGraw-Hill, London.
Zietlow, W.K. and Labuz, J.F. (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.
Zubelewicz, A. and Mroz, Z. (1983) Numerical simulation of rockburst processes treated as problems of dynamic instability. Rock Mech. And Eng.




Physical Process Modeling Resources:   Mathematics   Physics   Electronics   Programming   Heat transfer