processmodeling.org

Articles
INTRODUCTION

KINEMATICS
    2.1. Introduction;
    2.2. Frames of reference;
    2.3. Kinematics of a particle: definitions;
    2.4. Tangential and normal acceleration;
    2.5. Motion with constant acceleration;
    2.6. Angular kinematic parameters;
    2.7. Rotation with constant acceleration;
    2.8. Relations between linear and angular kinematic variables;
    2.9. Galilean transformation;
    2.10. Relative rotational motion;

NEWTON'S LAWS
    3.1. Introduction
    3.2. The law of inertia
    3.3. Mass
    3.4. Momentum and the principle of conservation of momentum
    3.5. Newton's second law: force
    3.6. Law of action and reaction
    3.7. Angular momentum and torque
    3.8. Dynamics of circular motion
    3.9. Relative translational motion
    3.10. Fundamental interactions and forces

APPLICATION OF NEWTON'S LAWS
    4.1. Introduction
    4.2. Applications of the laws of motion
    4.3. Gravitation
    4.4. Contact forces
    4.5. Restoring force

WORK AND ENERGY
    5.1. Introduction
    5.2. Work
    5.3. Power
    5.4. Kinetic energy
    5.5. Potential energy
    5.6. Relation between force and potential energy
    5.7. Law of conservation of energy
    5.8. Work of non-conservative forces
    5.9. Potential energy curves. equilibrium

SYSTEMS OF PARTICLES
    6.1. Introduction
    6.2. Center of mass
    6.3. Linear momentum
    6.4. Angular momentum
    6.5. Kinetic energy
    6.6. Work- energy theorem
    6.7. Principle of conservation of energy
    6.8. Collisions

MOTION OF RIGID BODY
    7.1. Introduction
    7.2. Translational and rotational motion
    7.3. Rotation of a rigid body about a fixed axis
    7.4. Energy of a rigid body.
    7.5. Analogy between the rotational and translational motion

IDEAL GAS
    8.1. Introduction
    8.2. Thermal equilibrium and temperature
    8.3. The ideal gas equation
    8.4. Kinetic theory of the ideal gas

FIRST AND SECOND PRINCIPLE OF THERMODYNAMICS
    9.1. Introduction
    9.2. Internal energy and work of many-particle system
    9.3. Work
    9.4. Heat
    9.5. First law of thermodynamics
    9.6. Heat capacity
    9.7. Entropy
    9.8. Carnot cycle

ELECTRIC CHARGE AND ELECTRIC FIELD
    10.1. Introduction
    10.2. Electric interaction and electric charge
    10.3. Coulomb's law
    10.4. Electric field
    10.5. Electric potential
    10.6. Motion of charged particles in electric field

GAUSS' LAW
    11.1. Introduction
    11.2. Lines of force and equipotential surfaces
    11.3. Flux of the electric field
    11.4. Field patterns

CONDUCTORS AND DIELECTRICS IN AN ELECTRIC FIELD
    12.1. Introduction
    12.2. Conductor in an electric field
    12.3. Dielectric in an electric field
    12.4. Electric capacitance
    12.5. Energy of the electric field

ELECTRICAL CURRENTS
    13.1. Introduction
    13.2. Current and current density
    13.3. Ohm's law
    13.4. Conduction of electricity in metals
    13.5. Electric power
    13.6. Electromotive force

MAGNETIC INTERACTION
    14.1. Introduction
    14.2. Magnetic field
    14.3. Motion of charges in a uniform magnetic field
    14.4. The hall effect
    14.5. Magnetic force on an electric current
    14.6. Magnetic torque on a current loop

SOURCES OF MAGNETIC FIELDS
    15.1. Introduction
    15.2. Magnetic feld of a moving charge
    15.3. Magnetic field of currents
    15.4. Ampere's law
    15.5. Gauss' law
    15.6. Magnetic field of a solenoid

MAGNETIZATION OF MATTER
    16.1. Introduction
    16.2. Magnetic moments of electrons and atoms
    16.3. Magnetisation
    16.4. Ferromagnetism
    16.5. Magnetization vector
    16.6. The magnetizing field
    16.7. Energy of the magnetic field

Kinetic energy is identical to electromagnetic energy

Celsius, Farenheit and Kelvin Temperature Scales

Magic Numbers In Physics







Multiphysical Models


Incompressible
Navier-Stokes



MOVIE

MOVIE


Fluid dynamics 1
Fluid dynamics 2


General Heat
Transfer
Conductive Media
DC




Other demo movies:

demo 1
demo 2
demo 3
demo 4